Sand alone 架构
Standalone模式是Spark自带的一种集群模式,不同于前面本地模式启动多个进程来模拟集群的环境,Standalone模式是真实地在多个机器之间搭建Spark集群的环境,完全可以利用该模式搭建多机器集群,用于实际的大数据处理。
Stand alone 是完整的spark运行环境,其中 Master 角色以Master进程存在,worker角色以worker进程存在,
Driver角色在运行时存在于Master进程内,Executor运行于Worker进程内
StandAlone集群在进程上主要有3类进程:
- 主节点Master进程:
Master角色, 管理整个集群资源,并托管运行各个任务的Driver - 从节点Workers:
Worker角色, 管理每个机器的资源,分配对应的资源来运行Executor(Task);
每个从节点分配资源信息给Worker管理,资源信息包含内存Memory和CPU Cores核数 - 历史服务器HistoryServer(可选):
Spark Application运行完成以后,保存事件日志数据至HDFS,启动HistoryServer可以查看应用运行相关信息。
对于上图有一个地方需要注意:
在 standalone 模式下, master进程和 worker进程是固定的。
开启一个任务,就会在master进程中开启一个对应的 Driver线程,然后在worker进程中开启一个或者多个 Executor线程
开启两个任务,就会在master进程中开启两个对应的 Driver线程,对应的Executor各自汇报给对应的Driver,Executor数量根据你任务情况而定。
stand alone 环境安装
node1运行: Spark的Master进程 和 1个Worker进程
node2运行: spark的1个worker进程
node3运行: spark的1个worker进程
整个集群提供: 1个master进程 和 3个worker进程
前提:在所有机器安装Python(Anaconda)
参照 单机模式下的 Anaconda安装即可,除了不解压
https://blog.csdn.net/m0_48639280/article/details/128459471
记得配置 /etc/profile /root/.bashrc
更改国内源
进入到spark的安装目录,进入conf文件夹
配置workers文件,这儿有一个前提,你/etc/hosts 文件有路由映射,要是你没有映射worker文件设置不生效
# 改名, 去掉后面的.template后缀
mv workers.template workers
# 编辑worker文件
vim workers
# 将里面的localhost删除, 追加
node1
node2
node3
到workers文件内
# 功能: 这个文件就是指示了 当前SparkStandAlone环境下, 有哪些worker
配置spark-env.sh文件
# 1. 改名
mv spark-env.sh.template spark-env.sh
# 2. 编辑spark-env.sh, 在底部追加如下内容
## 设置JAVA安装目录
JAVA_HOME=/export/server/jdk
## HADOOP软件配置文件目录,读取HDFS上文件和运行YARN集群
HADOOP_CONF_DIR=/export/server/hadoop/etc/hadoop
YARN_CONF_DIR=/export/server/hadoop/etc/hadoop
## 指定spark老大Master的IP和提交任务的通信端口
# 告知Spark的master运行在哪个机器上
export SPARK_MASTER_HOST=node1
# 告知sparkmaster的通讯端口
export SPARK_MASTER_PORT=7077
# 告知spark master的 webui端口
SPARK_MASTER_WEBUI_PORT=8080
# worker cpu可用核数
SPARK_WORKER_CORES=1
# worker可用内存
SPARK_WORKER_MEMORY=1g
# worker的工作通讯地址
SPARK_WORKER_PORT=7078
# worker的 webui地址
SPARK_WORKER_WEBUI_PORT=8081
## 设置历史服务器
# 配置的意思是 将spark程序运行的历史日志 存到hdfs的/sparklog文件夹中
SPARK_HISTORY_OPTS="-Dspark.history.fs.logDirectory=hdfs://node1:8020/sparklog/ -Dspark.history.fs.cleaner.enabled=true"
在HDFS上创建程序运行历史记录存放的文件夹:
hadoop fs -mkdir /sparklog
hadoop fs -chmod 777 /sparklog 修改权限方便后续操作
配置spark-defaults.conf文件
# 1. 改名
mv spark-defaults.conf.template spark-defaults.conf
# 2. 修改内容, 追加如下内容
# 开启spark的日期记录功能
spark.eventLog.enabled true
# 设置spark日志记录的路径
spark.eventLog.dir hdfs://node1:8020/sparklog/
# 设置spark日志是否启动压缩
spark.eventLog.compress true
配置log4j.properties 文件 [可选配置]
# 1. 改名
mv log4j.properties.template log4j.properties
# 2. 修改内容 参考下图
将Spark安装文件夹 分发到其它的服务器上
目前这些配置只在 node1上。
scp -r spark-3.1.2-bin-hadoop3.2 node2:/export/server/
scp -r spark-3.1.2-bin-hadoop3.2 node3:/export/server/
准备步骤完成了,最后检查每台机器的:
JAVA_HOME
SPARK_HOME
PYSPARK_PYTHON
等等 环境变量是否正常指向正确的目录
启动历史服务器,在spark安装目录下的sbin目录
start-history-server.sh
执行该脚本即可
如下图,则启动成功
查看历史服务器WEB UI
历史服务器的默认端口是: 18080
我们启动在node1上, 可以在浏览器打开:
node1:18080
来进入到历史服务器的WEB UI上。可以查看自己提交任务的执行记录。
还是这个sbin目录
通过 start-all.sh
脚本启动集群 stop-all.sh
脚本关闭集群
start-master.sh
start-work.sh
启动当前机器上的 master 和 worker
如下图,则启动成功
查看Master的WEB UI
默认端口master我们设置到了8080
如果端口被占用, 会顺延到8081 …;8082… 8083… 直到申请到端口为止
可以在日志中查看, 具体顺延到哪个端口上:
Service 'MasterUI' could not bind on port 8080. Attempting port 8081.
测试
连接Stand Alone集群
在spark安装目录下:执行以下命令。前面单机模式有使用这个命令
pyspark --master local[*] 或者 pyspark --master local 这种是连接到本地模式的命令
下面是连接到stand alone 集群模式的命令
bin/pyspark --master spark://node1:7077
下图标记显示的就是我们连接到master的客户端:
http://node1:4040这个页面就是Driver提供的界面,里面可以查看任务的运行详情,你要是有多个Driver就有多个页面,端口往后顺延 4041 4042这样。
同样的,
提交完整程序到spark运行的命令: bin/spark-submit --master spark://node1:7077
运行R语言的客户端 : bin/sparkR --master spark://node1:7077
总结
在前面我们接触到了不少的监控页面,有4040,有8080,有18080,它们有何区别吗?
4040: 是一个运行的Application在运行的过程中临时绑定的端口,用以查看当前任务的状态.4040被占用会顺延到4041.4042等
4040是一个临时端口,当前程序运行完成后, 4040就会被注销哦
8080: 默认是StandAlone下, Master角色(进程)的WEB端口,用以查看当前Master(集群)的状态
18080: 默认是历史服务器的端口, 由于每个程序运行完成后,4040端口就被注销了. 在以后想回看某个程序的运行状态就可以通过历史服务器查看,历史服务器长期稳定运行,可供随时查看被记录的程序的运行过程.
Stand Alone HA模式
Spark Standalone集群是Master-Slaves架构的集群模式,和大部分的Master-Slaves结构集群一样,存在着Master单点故障(SPOF)的问题。
一旦Master节点宕机,就没有进程处理集群资源的规划,资源无法进行规划,那么集群就无法获得资源。
解决方式:Spark提供了两种方案
1.基于文件系统的单点恢复(Single-Node Recovery with Local File System)---------只能用于开发或测试环境。
2.基于zookeeper的Standby Masters(Standby Masters with ZooKeeper)----可以用于生产环境。
ZooKeeper提供了一个Leader Election机制,利用这个机制可以保证虽然集群存在多个Master,但是只有一个是Active的,其他的都是Standby。当Active的Master出现故障时,另外的一个Standby Master会被选举出来。由于集群的信息,包括Worker, Driver和Application的信息都已经持久化到文件系统,因此在切换的过程中只会影响新Job的提交,对于正在进行的Job没有任何的影响。加入ZooKeeper的集群整体架构如下图所示。
在配置了HA模式情况下,Master在启动之后都会去 zookeeper中去注册一个临时节点,节点名字在下面配置文件中有进行配置,第一个注册的Master就是Alive状态,后面去注册的Master发现节点被注册,那么后续Master会持续监听zookeeper中的临时节点。并将自己Master设置为standby状态。
worker也会和zookeeper进行通讯,从zookeeper中获取活跃的Master,也就是配置文件中指定的节点名称,从节点中获取当前Alive的master。worker就和活跃的Master组成集群。
当Alive的master宕机,zookeeper收不到心跳包,将临时节点删除(大概需要15s左右的时间),那么之前监听的状态为standby的master和zookeeper进行通讯,谁先抢到这个临时节点创建的权限谁就从standby状态转到Alive状态。
worker发现master宕机之后,就会询问zookeeper,zookeeper会将新的Master告知worker,然后新的Master就会进行接管工作,和worker组成集群继续工作,中间这段宕机时间成为中断期,包括节点删除时间在内,大约在30s
HA模式的搭建
前提:确保Zookeeper 和 HDFS 均已经启动
默认情况下,先启动的Master就为Active Master
先在spark-env.sh
中, 删除: SPARK_MASTER_HOST=node1
原因: 配置文件中固定master是谁, 那么就无法用到zk的动态切换master功能了.
在spark-env.sh
中, 增加:
SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=node1:2181,node2:2181,node3:2181 -Dspark.deploy.zookeeper.dir=/spark-ha"
# -Dspark.deploy.recoveryMode=ZOOKEEPER 指定HA模式 基于Zookeeper实现
# -Dspark.deploy.zookeeper.url=node1:2181,node2:2181,node3:2181 指定Zookeeper的连接地址
# 这儿zookeeper也搭建了集群,要是你搭一个zookeeper就写一个地址就行了,我搭的一个
# -Dspark.deploy.zookeeper.dir=/spark-ha 指定在Zookeeper中注册临时节点的路径
将spark-env.sh 分发到每一台服务器上
scp spark-env.sh node2:/export/server/spark/conf/
scp spark-env.sh node3:/export/server/spark/conf/
停止当前StandAlone集群
sbin/stop-all.sh
启动集群:
# 在node1上 启动一个master 和全部worker
sbin/start-all.sh
# 注意, 下面命令在node2上执行
sbin/start-master.sh
# 在node2上启动一个备用的master进程
master主备切换测试
提交一个spark任务到当前alive
master上:
bin/spark-submit --master spark://node1:7077 /export/server/spark/examples/src/main/python/pi.py 1000
在提交成功后, 将alivemaster直接kill掉
不会影响程序运行:
当新的master接收集群后, 程序继续运行, 正常得到结果.
最终效果:
HA模式下, 主备切换 不会影响到正在运行的程序.
最大的影响是 会让它中断大约30秒左右.