【代码随想录刷题笔记 Day 44】518. 零钱兑换 II | 377. 组合总和 Ⅳ

文章介绍了两个使用动态规划解决的编程问题:一是给定不同面额的硬币和总金额,计算组成该金额的硬币组合数;二是找出给定数组中元素组合成目标值的不同方法数。这两个问题都通过创建动态规划数组来求解,并避免了重复计算。
摘要由CSDN通过智能技术生成

518. 零钱兑换 II

题目

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。 

题目数据保证结果符合 32 位带符号整数。

示例
输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int>dp(amount+1,0);
        dp[0] = 1;
        for(int i = 0; i < coins.size();i++)
        {
            for(int j = coins[i]; j <= amount; j++)
            {
                dp[j] += dp[j-coins[i]];
            }
        }
        return dp[amount];
    }
};

377. 组合总和 Ⅳ

题目

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

示例

输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。
class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int>dp(target+1,0);
        dp[0] = 1;
        for(int j = 0; j <= target; j++)
        {
            for(int i = 0; i < nums.size(); i++)
            {
                if (j-nums[i] >=0 &&  dp[j] < INT_MAX - dp[j - nums[i]])
                dp[j] += dp[j-nums[i]];
            }
        }
        return dp[target];

    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值