人工智能(AI)近两年的发展具有“大”和“多”的鲜明特征,大模型的参数规模越来越大,文图视等方面的多模态能力也越来越强。2025年,它又将如何进化?
从全球业界发展趋势看,AI将具备更强的推理能力,各形态智能体会更加普及,同时也会有“规模定律”受考验等更多挑战浮现。
一、大模型应用更广,推理能力更强大
2024年,各家大模型不再简单竞争参数规模,而是将兼具文字图片视频等不同能力的多模态作为重要发力点。美国开放人工智能研究中心(OpenAI)的文生视频大模型Sora在2024年2月面世就惊艳世界,正式版已于12月向用户开放。
美国谷歌公司近期发布的《2025年AI商业趋势报告》预测,2025年多模态AI将成为企业采用AI的主要驱动力,助力改善客户体验,提高运营效率,开发新的商业模式。 例如,多模态AI将广泛用于医疗领域,通过分析医疗记录、成像数据、基因组信息等推进个性化医疗;在零售、金融服务、制造业等领域的应用也将不断扩展。有专家认为,通用人工智能正渐行渐近。
AI的逻辑推理能力在提升。OpenAI在2024年9月发布推理模型o1,并在12月迅速升级到o3版本,新模型在数学、编程、博士级科学问答等复杂问题上,表现出超越部分人类专家的水平。谷歌也在12月发布其最新推理模型“双子座2.0闪电思维”,专注于解决编程、数学及物理等领域的难题。
美国“元”公司最近推出了与传统大型语言模型不同的大型概念模型,它可以在更高的语义层级——“概念”上进行思考。这种方法能够更好地捕捉文本的整体语义结构,使模型能在更高的抽象层面进行推理。
这些具备高级推理能力的模型在科学研究中潜力巨大。2024年诺贝尔物理学奖颁给机器学习先驱、化学奖颁给能预测蛋白质结构的AI开发者,凸显人工智能推动科研的巨大贡献。业界普遍认为,AI将在2025年加速科技突破,有望在可持续材料、药物发现和人类健康等方面展现出新的能力。
二、智能体将更普及,具身智能受期待
智能体的出现频率将越来越高。智能体指使用AI技术,能够自主感知环境、作出决策并执行行动的智能实体。如果把大模型比作一名学到很多知识、尚未进入社会实践的学生,智能体则像个毕业生,即将学以致用,在社会中发挥自己的价值。
智能体可以是一个程序。2024年11月底,在智谱AI开放日上最新“出炉”的智能体已经可以替用户点外卖。只要说出需求,它就像一个能理解、会帮忙的小助手,可在无人工干预条件下完成跨应用程序、多步骤的真实任务。
业界普遍认为,这种智能体2025年将变得更加普及,且能处理更复杂的任务,将人类从一些重复且琐碎的工作中解放出来。 德勤公司发布的《2025年技术趋势》报告预测,智能体很快将能支持供应链经理、软件开发人员、金融分析师等人员的工作。
智能体还可结合物理实体,形成“具身智能”,如自动驾驶汽车、具身智能机器人等。美国国际数据公司负责人工智能领域的高管丽图·乔蒂认为,智能体未来有望全面革新自动驾驶领域。美国特斯拉公司研发的人形机器人“擎天柱”已可在工厂行走、分拣电池,还能以接近人类的灵活度用单手稳稳接住迎面抛来的网球,有望在2025年实现小批量生产并投入使用。
三、“规模定律”受考验,多重挑战需应对
大模型过去一段时间的快速发展符合“规模定律”,即大模型的性能随着模型参数、训练数据量和计算量的增加而线性提高。但近来不断有迹象显示,由于训练数据即将耗尽、更大规模训练的能耗和成本激增等因素,“规模定律”可能难以延续。
因此有研究者提出“密度定律”,指AI模型的能力密度随时间呈指数级增长。北京面壁智能科技有限责任公司联合创始人兼执行总裁李大海说,现在越来越多的企业更注重AI算法的调优,同样的模型能力可被放到一个更小的参数规模里,表明模型的能力密度不断增强。“炼大模型,不如炼优模型”。
微软开发的Phi模型等一系列小模型已显示,管理较小但高质量的数据集可以提高模型的性能和推理能力。中国深度求索公司2024年12月底发布混合专家模型DeepSeek-V3。测试结果显示,与某些性能相当的国际知名大模型相比,成本低了一个数量级。业内人士预测,小模型的吸引力可能在2025年大幅增高。
发展AI的能源挑战也备受关注。由于训练最新的大模型耗能巨大,微软、谷歌、亚马逊等科技巨头已将目光瞄向核能。
AI的快速发展还伴随着安全、治理、版权、伦理等方面的新风险。 例如多模态功能的拓展,使虚假信息的内容形态更加多元,也更难被普通人所辨别;智能体自主性的提高,会带来其目标与人类意图不一致或产生意外行为的风险。
为应对这些风险和挑战,全球多国已从政策法规、技术标准、行业自律等多个维度加强AI治理。2025年,国际社会将举办人工智能行动峰会等多场相关活动,共议AI发展前景与规范。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。