AI 大模型新手入门秘籍:全方位知识点剖析,新手专属干货大全!

一、什么是 AI 大模型

AI 大模型,即人工智能大模型,是 “大数据 + 大算力 + 强算法” 结合的产物 。它通过在大规模数据上进行训练,拥有海量参数(通常在十亿个以上),具备高度的通用性和泛化能力。打个比方,传统的小模型像是一个只储备了某一学科知识的学生,只能解决特定类型的问题;而大模型则像是一个知识渊博、博闻强识的学者,对各种领域的知识都有涉猎,能够应对自然语言处理、图像识别、语音识别等广泛领域的复杂任务 。

请添加图片描述

从发展历程来看,AI 大模型主要经历以下阶段:

  • 萌芽期(1950 年 - 2005 年):以 CNN 为代表的传统神经网络模型阶段。
  • 沉淀期(2006 年 - 2019 年):以 Transformer 为代表的全新神经网络模型阶段。
  • 爆发期(2020 年 - 至今):以 GPT 为代表的预训练大模型阶段。
  • 2020 年,OpenAI 推出的 GPT - 3,模型参数规模达 1750 亿,在零样本学习任务上性能大幅提升。
  • 2022 年,搭载 GPT3.5 的 ChatGPT 问世,凭借强大的自然语言交互与内容生成能力,迅速火爆全球,也让大模型走进了大众视野,引发了各界的广泛关注和研究 。
    请添加图片描述

二、初学者学习大模型难吗

对于初学者而言,学习大模型确实存在一定挑战,但绝非不可逾越。困难主要体现在以下几个方面:

  1. 理论知识复杂:大模型背后依托复杂的数学和统计学原理,像概率论、统计推断、微积分、线性代数等数学知识是理解模型构建和优化的基础。例如在梯度下降算法中,就需要运用微积分知识来计算梯度,从而调整模型参数。此外,深度学习架构如卷积神经网络、循环神经网络、自注意力机制等的工作原理也需要深入钻研 。

  2. 计算资源需求高:训练大型模型需要强大的计算能力,一般个人电脑的配置很难满足。通常需要高性能的 GPU 集群,甚至像谷歌的 TPU 这类专业加速芯片。例如训练 GPT - 3 这样的大模型,背后需要微软 Azure 强大的算力支持 。

  3. 编程技能要求高:实现大模型需要熟练掌握编程技能,尤其是 Python 编程语言,以及 TensorFlow、PyTorch、Keras 等深度学习框架。从数据处理、模型搭建到训练调试,每个环节都离不开编程实现 。

  4. 数据管理挑战大:用于训练大模型的是海量数据,如何采集、整理、存储和预处理这些数据是个难题。同时,还需要掌握特征工程技术,对数据进行特征选择、提取和构造,以提高模型性能 。

  5. 调试与优化困难:大模型的调试和性能优化需要丰富的经验和敏锐的直觉。理解学习率、批次大小、正则化强度等超参数对模型性能的影响,并通过网格搜索、随机搜索等方法调参,都需要不断实践和摸索 。

然而,随着在线教育资源的丰富和开源软件的普及,初学者也有很多途径可以逐步攻克这些难题 。例如,可以先从基础理论知识学起,通过在线课程、专业书籍等资源,系统学习机器学习和深度学习的基础知识;从简单模型入手,逐步过渡到复杂模型,如先掌握逻辑回归模型,再深入学习神经网络模型;利用开源的数据集和框架,进行实践操作,参与一些开源项目,积累项目经验 。

三、学习大模型有什么好处

  1. 个人职业发展助力大
  • 薪资提升:大模型技术属于稀缺技能,掌握它能在薪资谈判中占据优势,获得更高的薪资待遇和职位晋升机会。例如在一些一线城市,AI 大模型相关岗位的薪资普遍比传统软件开发岗位高出 30% - 50% 。
    请添加图片描述

  • 工作效率提升:在日常工作中,利用大模型可以显著提高工作效率。比如文案撰写人员借助大模型,能快速生成文案初稿,大幅缩短创作时间;数据分析师可以通过大模型快速处理和分析海量数据,得出有价值的结论 。

  • 创业与兼职机会:掌握大模型技术,能让个人成为 “超级个体”,有能力独立承包项目或开展创业活动。例如可以为企业定制开发基于大模型的智能客服系统、智能推荐系统等,拓宽职业发展道路 。

  • 增强职场竞争力:持续学习大模型技术,不断提升自身技能,能有效降低降薪或裁员风险,在职场中保持优势地位,尤其是在科技行业,对大模型人才的需求持续增长 。

  1. 企业发展价值高
  • 降本增效:企业应用大模型,可以提升员工综合能力和工作产值,减少人工重复劳动,降低运营成本。例如智能客服大模型的应用,能够快速响应客户咨询,减少人工客服数量 。

  • 产品创新:借助大模型,企业可以对产品进行重新设计和改良,提升用户体验,增强产品竞争力。如电商平台利用大模型优化商品推荐算法,提高用户购买转化率 。

  • 数据安全可控:通过私有化部署大模型,企业能够确保数据安全,减少数据泄露风险,增强客户信任,尤其对于金融、医疗等对数据安全要求极高的行业 。

四、怎么去学习大模型

  1. 系统化理论知识学习
  • 研读经典教材:从机器学习和深度学习的经典教材入手,如《统计学习方法》《Hands - On Machine Learning with Scikit - Learn, Keras, and TensorFlow》《Deep Learning》等。通过学习,掌握机器学习的基本算法、模型评估方法,以及深度学习中的神经网络结构、训练方法等知识 。

  • 掌握数学基础:重点学习概率论、统计推断、微积分、线性代数等数学知识。例如理解概率论中的贝叶斯定理在模型不确定性估计中的应用,线性代数中的矩阵运算在神经网络计算中的作用 。

  • 关注前沿架构与理论:跟进深度学习前沿架构和理论,如 Transformer 家族的各种变体(BERT、GPT 等基于 Transformer 架构)、生成对抗网络等。了解这些架构的创新点和应用场景,为后续深入学习大模型奠定基础 。

  1. 实践编程技能培养
  • 精通编程语言与框架:熟练掌握 Python 编程语言,深入学习 TensorFlow、PyTorch 等深度学习框架。通过实践项目,掌握如何使用框架进行数据加载、模型搭建、训练和评估。例如使用 PyTorch 搭建一个简单的图像分类模型,并在 CIFAR - 10 数据集上进行训练 。

  • 数据处理与模型训练实践:从数据获取开始,学习如何清洗、预处理数据,构建数据集。在模型训练过程中,掌握设置和调整超参数的方法,理解不同优化算法(如梯度下降、Adam 等)的原理和应用场景。通过实践,学会运用交叉验证、网格搜索等方法优化模型性能,使用精度、召回率、F1 分数等指标评估模型效果 。

  1. 深度融合领域专业知识
  • 自然语言处理领域:如果对自然语言处理方向感兴趣,除掌握 NLP 基本技术(词嵌入、句法分析等)外,还需深入了解文本分类、情感分析、机器翻译等具体任务,以及实际应用中的难点和挑战。例如在情感分析中,如何处理文本中的语义歧义、隐含情感等问题 。

  • 计算机视觉领域:针对计算机视觉方向,要钻研图像处理、目标检测、图像分割等技术。考虑在实际场景中,如自动驾驶中,光照变化、遮挡、物体变形等因素对模型性能的影响,以及如何通过技术手段进行优化 。

  1. 大规模数据处理与工程实践
  • 学习大数据处理框架:掌握 Hadoop、Spark 等大数据处理框架,了解如何利用这些框架进行分布式计算,处理大规模数据。例如使用 Spark 对海量的用户行为数据进行分析和处理 。

  • 云服务与数据管理:熟悉阿里云 MaxCompute、AWS S3 等云服务,学会在云平台上进行数据存储、管理和计算。同时,掌握特征工程技术,如使用 PCA(主成分分析)进行特征提取,通过特征构造生成新的特征,提高模型对数据的理解和预测能力 。

  1. 模型优化与调参技巧学习
  • 理解超参数影响:深入理解学习率、批次大小、正则化强度等超参数对模型性能的影响。例如学习率设置过大,模型可能无法收敛;批次大小设置不合理,可能影响训练效率和模型性能 。

  • 掌握调参方法:熟练运用网格搜索、随机搜索、贝叶斯优化等调参方法,寻找最优超参数组合。通过实践对比不同调参方法的优缺点和适用场景,提高调参效率 。

  • 模型压缩与加速:关注模型压缩与加速技术,如模型剪枝(去除不重要的连接或神经元)、权重量化(降低参数存储精度)、知识蒸馏(将大模型的知识迁移到小模型)等。这些技术可以在保持模型性能的同时,降低模型的存储和运算开销,使其更适用于实际应用,如移动端设备 。

总结

AI 大模型作为人工智能领域的前沿技术,正以前所未有的速度改变着我们的生活与工作。虽然学习 AI 大模型的道路充满挑战,无论是复杂的理论知识、对计算资源的高要求,还是编程技能和数据管理等难题,都需要付出大量精力去克服,但只要循序渐进、持续实践,这些障碍都能逐步突破。同时,学习大模型带来的回报也十分丰厚,无论是对个人职业发展的薪资提升、工作效率提高、创业机会拓展,还是对企业降本增效、产品创新、数据安全保障,都有着不可估量的价值。希望这份入门宝典能成为你探索 AI 大模型世界的起点,勇敢踏上学习之旅,在这片充满无限可能的领域中收获成长与成就。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值