在科技飞速发展的当下,人工智能领域成为了全球瞩目的焦点。在这片充满创新与竞争的领域中,来自东方的 DeepSeek 犹如一颗冉冉升起的新星,迅速吸引了业界的目光。它的诞生与发展,不仅是一家企业技术实力的体现,更是人工智能行业发展的一个缩影。
诞生背景
近年来,人工智能技术取得了爆发式增长。从图像识别到自然语言处理,从智能驾驶到智能家居,AI 的应用场景不断拓展。OpenAI、谷歌等国际巨头在 AI 领域不断发力,推出了 GPT 系列、BERT 等具有深远影响的模型,引领着行业的发展潮流。这些模型在语言理解、生成以及复杂任务处理上展现出了惊人的能力,推动着人工智能从理论研究迈向实际应用。
然而,在国际巨头占据主导地位的 AI 领域,中国的科技企业也在积极探索,努力寻求突破。国内对人工智能技术的研发投入持续增加,人才储备不断丰富,产学研合作日益紧密。在这样的大环境下,2018 年,DeepSeek 应运而生,肩负着在全球 AI 竞争中崭露头角,为中国人工智能技术发展贡献力量的使命。
(创始人-梁文峰)
发展历程
1、早期探索与技术积累(2018 - 2020)
2018 年,DeepSeek 的核心团队组建,团队成员来自计算机科学、数学、统计学等多个领域,他们怀揣着对人工智能技术的热情与追求,开始了在 AI 领域的探索。在成立初期,团队专注于底层技术的研究与积累,深入钻研机器学习、深度学习算法,尤其是在 Transformer 架构的基础上进行了大量的实验与优化。这一时期,团队虽然鲜少在公众面前露面,但他们在幕后默默耕耘,为 DeepSeek 的未来发展奠定了坚实的技术基础。
2、模型研发与初步突破(2020 - 2022)
经过数年的技术沉淀,DeepSeek 在模型研发上取得了重要进展。团队针对自然语言处理和复杂推理任务,开发出了一系列具有创新性的模型架构。2022 年,DeepSeek 首次发布了具有自主知识产权的基础模型,该模型在语言理解和生成任务上展现出了出色的性能,尤其在中文语言处理方面,凭借对中文语义和语法的深入理解,表现超越了许多国际同类模型,引起了行业内的广泛关注。
-
2022 年 8 月 15 日,DeepSeek-Base 发布
这是 DeepSeek 首次发布的具有自主知识产权的基础模型,对自然语言理解和生成任务有着出色的处理能力。特别是在中文语言处理上,它深入剖析中文语义和语法,构建了更贴合中文语言习惯的语言理解与生成逻辑,超越了许多国际同类模型。基于此模型,DeepSeek 推出了智能写作辅助工具,帮助创作者快速生成文章大纲、补充内容细节,受到了内容创作者和文案策划人员的青睐。
3、持续优化与应用拓展(2022 - 2024)
模型发布后,DeepSeek 并没有满足于现状,而是持续投入大量资源对模型进行优化。通过引入更多的数据、改进训练算法以及优化模型结构,DeepSeek 的模型性能得到了进一步提升。同时,团队开始积极拓展模型的应用场景,与医疗、金融、教育等多个行业的企业展开合作。在医疗领域,DeepSeek 的模型能够辅助医生进行疾病诊断和病历分析;在金融领域,它可以进行风险评估和投资策略制定;在教育领域,能够为学生提供个性化的学习辅导。这些实际应用不仅为企业带来了价值,也进一步验证了 DeepSeek 模型的实用性和可靠性。
4、对标国际与引领创新(2024 - 至今)
随着技术实力的不断增强,DeepSeek 开始将目光投向国际市场,与 OpenAI 等国际知名企业展开正面竞争。2024 年,DeepSeek 发布了具有里程碑意义的 DeepSeek-R1 模型,该模型在推理能力、事实核查能力以及逻辑规划能力等方面表现卓越,与 OpenAI 的 o1 模型相比毫不逊色,甚至在某些指标上实现了超越。DeepSeek-R1 的发布,标志着 DeepSeek 正式跻身国际一流 AI 模型行列,也为中国人工智能技术在全球赢得了更多的话语权。
-
2024 年 9 月5日,DeepSeek-V2.5发布 :
该模型引入全新注意力机制,在图像识别与处理能力上显著提升,能更聚焦图像关键元素,大幅提高复杂场景图像的识别准确率,保障自动驾驶、安防监控等场景的安全性与准确性。
-
2024 年 11 月 20 日,DeepSeek-R1-Lite发布:
该模型使用强化学习训练,推理过程包含大量反思和验证,思维链长度可达数万字,在数学、代码及复杂逻辑推理任务上媲美 OpenAI o1-preview,在 AIME 和 codeforces 等评测中超越 GPT-4o 等模型。
-
2024 年 12 月10日,DeepSeek-V2.5更新 :
与之前版本相比,本次更新通过 Post-Training 全面提升了模型各方面能力表现,包括数学、代码、写作、角色扮演等;同时,新版模型优化了文件上传功能,并且全新支持了联网搜索,展现出更加强大的全方位服务于各类工作生活场景的能力。
-
2024 年12 月 26 日,DeepSeek-V3 发布:
融合多模态技术,实现文本、图像、音频联合处理,生成速度较 V2.5 提升 3 倍,每秒吞吐量达 60 token,且完全开源,多语言处理能力出色,尤其在算法代码和数学方面超越 Anthropic 的 Claude 3.5 Sonnet 大模型,仅次于 OpenAI o1 大模型。
-
2025 年 1 月 20 日,DeepSeek-R1 正式发布:
开源模型权重,采用结构化推理方式,性能与 OpenAI o1 正式版基本持平,在多项测试集上以微弱优势取胜,还上线 API,价格优势明显,同时开源的 DeepSeek-R1-zero 探索了仅通过强化学习训练大语言模型获得推理能力的技术可能性。
如今,DeepSeek 仍在不断前进,持续投入研发资源,探索人工智能的更多可能性。相信在未来,DeepSeek 将继续在人工智能领域发光发热,为推动全球科技进步贡献更多的东方智慧。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。