一、什么是 n8n?
简单来说,n8n (发音:n-eight-n) 是一个开源的、可视化的工作流自动化工具。你可以把它想象成一个数字世界的“乐高工厂”:
- 节点 (Nodes):就像不同功能的乐高积木,代表着一个个应用或服务(比如企业微信、飞书、邮件、数据库、AI 服务等)。
- 连接 (Connections):就像乐高积木之间的卡扣,把不同的节点按你的逻辑连接起来。
- 工作流 (Workflows):就是你用这些积木搭建起来的自动化流程。
与 Zapier 或 IFTTT 等工具相比,n8n 最大的优势在于其开源、可自托管的特性,给予了用户更高的数据控制权和灵活性。当然,它也提供了便捷的云服务版本。
二、准备工作:万丈高楼平地起
在正式开始搭建我们的第一个 n8n 工作流之前,一些准备工作是必不可少的。
1. 确保你的网络环境 (必备)
由于 n8n 官网、某些节点可能依赖的服务(例如 Google Sheets, Gmail 等)以及我们本次要用到的 DeepSeek AI 服务都需要正常的国际互联网访问。
- 你需要:自行准备好稳定的“上网”环境,确保可以顺畅访问 n8n.io 官网以及后续可能用到的各种在线服务。
- 验证:尝试在浏览器中打开 https://n8n.io/ 和 https://platform.deepseek.com/。如果都能正常访问,那么网络环境就绪。
这一步至关重要,否则后续很多操作都无法进行。
2. n8n 环境安装 (可选,推荐尝试本地安装)
n8n 提供了多种使用方式,你可以根据自己的情况选择:
n8n Cloud (云服务版):
- 优点:无需安装,注册即用,官方维护,省心省力。有免费套餐,适合快速体验。
- 访问:https://n8n.cloud/
- 操作:直接注册账号,登录后即可开始创建工作流。
本地安装 (通过 npm):
-
优点:完全免费,数据存在本地,拥有最高控制权,无功能限制(除了一些企业级特性)。
-
前提:需要你的电脑上安装了 Node.js 环境。
-
安装 Node.js:
-
访问 Node.js 官网:https://nodejs.org/
-
推荐下载 LTS (Long Term Support) 版本,它更稳定。
-
根据你的操作系统下载对应的安装包,双击安装,一路“下一步”即可。
-
安装完成后,打开你的终端 (Windows 用户可以使用 PowerShell 或 CMD,Mac/Linux 用户使用 Terminal)。
-
输入以下命令验证是否安装成功:
`node -v npm -v`
如果能看到版本号输出,说明 Node.js 和 npm (Node.js 的包管理器) 都已成功安装。
- 通过 npm 安装 n8n:
- 在终端中输入以下命令全局安装 n8n:
`npm install -g n8n`
等待安装完成。-g 参数表示全局安装,这样你可以在任何目录下运行 n8n 命令。
- 安装完成后,在终端输入以下命令启动 n8n:
`n8n`
-
启动成功后,终端会显示类似 Editor is now available at http://localhost:5678 的信息。
-
在浏览器中打开 http://localhost:5678 你就能看到 n8n 的界面了!首次启动可能需要设置用户名和密码。
Docker 安装:
- 优点:环境隔离,部署方便,适合有 Docker 使用经验的用户。
- 命令:docker run -it --rm --name n8n -p 5678:5678 -v ~/.n8n:/home/node/.n8n n8nio/n8n
- 由于是入门教程,这里不详细展开 Docker 部署,感兴趣的同学可以自行研究。
建议:如果你是第一次接触,可以先尝试 n8n Cloud 快速上手。如果你想更深入地学习和使用,或者对数据隐私有较高要求,本地安装是更好的选择。
3. 获取 AI 密钥 (必备)
为了让我们的 n8n 工作流能够与 AI 对话,我们需要一个 AI 服务的 API 密钥。本次我们选用 DeepSeek 作为 AI 服务提供商。DeepSeek 提供了强大的语言模型,并且有免费的 API 调用额度,非常适合学习和测试。
- 注册 DeepSeek 账号:
- 访问 DeepSeek 开放平台:https://platform.deepseek.com/
- 点击注册,按照提示完成账号创建。
- 获取 API 密钥:
- 登录你的 DeepSeek 平台账号。
- 在左侧导航栏找到 “API 密钥” 或类似入口。
- 点击 “创建新的 API 密钥”。
- 给你的密钥起一个名字(例如:n8n-test-key),然后创建。
- 重要:创建成功后,系统会显示你的 API 密钥。这个密钥只会显示一次,请务必立即复制并妥善保存到安全的地方(比如你的密码管理器或一个安全的文本文件中)。如果丢失,只能重新创建。
到这里,所有的准备工作就完成了!接下来,让我们进入激动人心的实战环节。
三、验证:搭建你的第一个 n8n 工作流
-
新建工作流在n8n仪表板点击"Create Workflow",添加作为触发器节点
点击加号选择节点
-
添加AI节点点击触发器节点的号,搜索 AI Agent。
配置 AI 模型:
选择 deepseek,填入密钥。
回到画布,开始验证,点击 open chat ;
给 AI发一条信息:
AI 回复一条信息:
确认收到有效响应即验证成功
提示:若使用API方式需先在DeepSeek平台生成API密钥
🎉 恭喜你!当 AI 给出回答,说明所有的准备工作已完成,并且你成功搭建并运行了你的第一个 n8n AI 工作流!🎉
抛砖引玉:n8n 的无限可能
我们刚刚完成的只是一个非常基础的示例,但它已经展示了 n8n 的核心工作方式:触发 -> 处理 -> 输出。
想象一下,你可以:
- 连接谷歌表格:当收到特定消息时,自动调用 AI 处理,并将结果回复或记录到表格。
- 监控RSS源:当有新文章发布时,自动总结摘要,并通过邮件发送给你。
- 定时任务:每天定时从数据库拉取数据,生成报表,并上传到指定位置。
- 电商自动化:当有新订单时,自动更新库存,通知客户,并添加到 CRM 系统。
- 内容创作助手:结合 AI,自动生成社交媒体帖子初稿,或者根据关键词生成文章大纲。
n8n 的节点库非常丰富,几乎涵盖了所有主流的 SaaS 服务、数据库、API 工具。即使没有现成的节点,强大的 “HTTP Request” 节点也能让你连接任何提供 API 的服务。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。