2024年6月,《自然》杂志发表了一篇引发全球AI界震动的论文《Language is primarily a tool for communication rather than thought》(语言主要是交流工具而非思维工具)。麦戈文脑研究所的神经学家Evelina Fedorenko和同事们认为我们并没有这种能力。他们说,语言主要是一种交流工具。
费多连科承认,语言和思维之间存在一种直觉上的联系。许多人都会听到一种似乎在叙述自己想法的内心声音。而且,人们不难想象,口齿伶俐、善于表达的人也会思考清晰。但尽管这些联系很有说服力,但它们并不能证明我们确实使用语言来思考。
“我认为,一些直觉和困惑让人们坚信语言是思想的媒介,”她说,“但当把这些线索逐一剖析时,它们实际上经不起实证检验。”
一、一场神经科学的“地震”:语言≠思维
MIT学者Evelina Fedorenko团队通过神经科学实验证明:语言功能与思维功能在大脑中是分离的,失语症患者即使丧失语言能力,仍能完成逻辑推理、数学计算等复杂思维任务。这一发现直接挑战了乔姆斯基“语言是思维基础”的经典理论,更揭示了当前大语言模型(LLM)的深层局限。
核心论点:
-
神经机制分离:语言处理依赖大脑的“语言网络”(如布洛卡区、韦尼克区),而推理、记忆等思维功能由其他脑区(如前额叶皮层)独立完成。
-
语言的交流本质:语言演化遵循“高效传递”原则,如歧义容忍、鲁棒性等特性,均服务于信息传播而非逻辑推理。
-
语言与认知的共生关系:语言与思维共同进化,但语言仅是文化知识传播的载体,而非思维的必需条件。
费多伦科说:“我们通过使用一些方法来了解语言处理机制的运作情况,我们发现,当我们思考时,这些机制实际上并没有发挥作用。”她还补充道:“你可以把这些机制拿走,但思考似乎仍然能够正常进行。”
在过去的 20 年里,费多连科和其他神经科学家加深了我们对大脑在生成和理解语言时所发生情况的理解。现在,他们使用功能性磁共振成像来找到人们在阅读或聆听句子或段落时特别参与的大脑区域,从而可以可靠地识别出一个人的语言处理网络。然后,他们可以在人们执行其他任务(从解决数独难题到推理其他人的信念)时监控这些大脑区域。
“到目前为止,我们测试的几乎所有东西都没有发现语言机制参与思考的证据,”费多伦科说。“当你进行各种思考时,你的语言系统基本上是沉默的。”
这与因受伤或中风而失去语言处理能力的人的观察结果一致。严重受影响的患者可能完全无法处理单词,但这并不影响他们解决数学问题、下棋或规划未来事件的能力。“他们可以做受伤前能做的所有事情。他们只是无法将这些心理表征转换成可以与他人谈论的形式,”费多伦科说。“如果语言为我们提供了用于推理的核心表征,那么……破坏语言系统也会导致思维问题,但事实并非如此。”
相反,智力障碍并不总是与语言障碍有关;**患有智力障碍或神经精神疾病的人思考和推理能力受限,不一定存在基本语言功能问题。**正如语言似乎不是思考的必要条件一样,费多连科及其同事得出结论,语言也不足以产生清晰的思维。
二、大模型为何“聪明反被聪明误”?
MIT研究如同一面镜子,照出了LLM的“阿喀琉斯之踵”。尽管GPT-4等模型能生成流畅文本,甚至通过图灵测试,但其在数学推理、物理建模等任务中屡屡翻车:
-
案例1:数字认知错乱
当被问及“9.11和9.8谁大?”时,多数LLM会错误地回答“9.11更大”,因为模型将“11”和“8”直接对比,而非理解小数点后的数值。 -
案例2:逻辑推理缺失
在因果推理任务中,LLM常依赖统计规律而非因果关系,生成的答案看似合理却经不起推敲。
本质原因:
-
模式匹配≠理解:LLM通过海量文本学习语言模式,但无法像人类一样进行抽象推理或整合多模态信息。
-
数据局限:训练数据多为人类语言投影,缺乏对物理世界的真实认知。
-
黑箱困境:模型内部运作机制不透明,难以解释其决策逻辑。
三、学界激辩:语言与思维的“二元对立”
MIT论文引发了学界对“语言-思维关系”的重新审视,不同学派观点激烈碰撞:
1、 支持“语言工具论”
-
神经科学证据:失语症患者保留推理能力,证明思维可独立于语言存在。
-
进化论视角:语言作为文化载体,通过知识积累推动文明进步,而非直接产生认知复杂性。
2、 反对“语言工具论”
-
乔姆斯基的坚持:语言是“内在心智的运算系统”(I语言),98%的语言使用是内在思考而非交流。
-
认知科学反驳:语言与思维在神经机制上存在重叠区域,如语言理解依赖概念系统,二者难以完全分离。
3、 折中观点:语言-思维协同进化
语言与思维可能形成“共生关系”:语言为复杂思维提供符号工具,而思维推动语言演化出更精细的表达能力。
四、AGI的“新基建”:超越语言中心主义
MIT研究对LLM的批判,实则指向AGI发展的核心瓶颈——如何实现真正的认知智能。当前技术路径面临三大挑战:
-
数据与现实的鸿沟
LLM依赖统计规律,但现实世界充满动态变化和隐性因果关系。例如,物理世界中的“重力”概念无法通过语言直接灌输,需通过具身交互学习。 -
多模态融合的复杂性
语言、视觉、触觉等模态需在认知层面深度整合。如网页指出,形式语言能力(语法规则)与功能语言能力(现实应用)需分别建模,但当前模型仍以单一语言模态为主。 -
自主推理与常识缺失
LLM的“思维链”(CoT)依赖人工设计的提示词,而非真正的因果推理。如网页所示,模型在数学任务中的错误暴露其缺乏底层逻辑理解。
破局方向:
-
神经符号融合:结合深度学习与符号推理,如MIT团队尝试将大模型与外部推理引擎结合。
-
具身智能:通过机器人等实体交互,让模型在物理世界中验证和修正认知。
-
认知科学评估体系:引入流体智力、社会智能等维度,全面衡量模型能力。
五、未来已来:人机协作的新纪元
尽管LLM尚未达到AGI的门槛,但其作为“智能助手”的价值已显现:
-
效率革命:在代码生成、数据分析等任务中,模型可节省人类70%以上的时间。
-
认知扩展:通过多模态交互,模型可帮助人类突破感官局限(如通过视觉输入辅助诊断)。
但需警惕“技术依赖症”:过度依赖LLM可能导致人类思维惰性,甚至加剧社会偏见(如模型生成的歧视性内容)。正如网页所述:“机器将成为新型劳动力,但人类需保持决策主导权。”
结语:语言的边界,认知的起点
MIT论文不仅动摇了语言学经典理论,更揭开了AI发展的深层迷雾:语言是工具,思维才是智能的本质。AGI的终极目标,不是模仿人类说话,而是像人类一样思考、感知、创造。这场始于神经科学的革命,或将引领AI走向真正的通用智能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。