大模型入门指南 - Training:小白也能看懂的“模型训练”全解析

Training(模型训练)本质是AI世界的‘科学烹饪实验’——以数据为食材原料,用超参数作配方比例,借验证集做品控质检,将‘玄学炼丹’的试错过程,淬炼成‘可复现的精密工程’。今天用最通俗的话,带你拆解模型训练(Training)全过程。

ML/DL Foundation 1: Loss Functions and Optimizers | by Preeti Singh Chauhan  | Medium

一、概念解读

Training(模型训练)到底是个啥? 模型训练(Model Training)是机器学习过程中的核心步骤,它涉及使用训练数据来调整模型的参数,以便模型能够准确地预测或决策。这个过程可以被看作是模型学习如何从输入数据中提取模式和特征,并将其应用于新数据的过程

模型训练中的专业术语如下:

  • 数据(Data):模型的课本+练习题,用于学习。类似学生通过刷题(训练数据)掌握知识点,通过模拟考(验证集)检验水平

  • 参数(Weights):模型的大脑神经元连接强度,训练中不断调整。类似学生解题时调整解题思路(参数),使答案更接近标准答案(真实标签)。

  • 损失函数(Loss):衡量模型答案与真实答案的差距。类似学生答错题扣分(Loss升高),答对加分(Loss下降)。

  • 优化器(Optimizer):调整参数的学习方法,如梯度下降=查漏补缺。类似学生根据错题本(梯度)调整学习策略(参数),优先补薄弱科目(高Loss方向)。

  • 正则化(Regularization):防止AI死记硬背的记忆抑制器。类似学生做题时强制理解原理(L1/L2正则化),而非机械背诵。

模型训练的本质是通过参数(解题思路)不断试错、用损失函数(扣分机制)量化差距、靠优化器(错题本复盘法)迭代策略、借正则化(防机械背诵规则)强化泛化,最终在验证集(模拟考)中交出高分答卷的过程。

Model Optimization: A Quick Guide | Ultralytics
为什么要进行模型训练? 刚初始化的模型就像一张白纸(参数随机设定),啥任务也完成不了。而训练能让模型逐渐掌握从输入到输出的正确映射关系,就好比让一个“文盲”变成“学霸”。

人类通过“课本学习+做练习题+考试检测”来掌握知识,模型训练则是依靠“数据输入+优化算法调整+验证集检验”来优化参数,使模型输出尽可能接近真实答案。

下面是模型训练中常见问题及解决办法:

  1. Loss不下降(模型学不会):就像学生上课听不懂老师讲的内容。大概率是数据质量差、模型架构有问题或者学习率设置过大。这时需要清洗数据、更换模型或者调小学习率。
  2. 过拟合(训练好但测试差):类似学生只会死记硬背题库,到了实际考试就不会。主要原因是数据量不够或者模型太复杂。解决办法是增加数据量、简化模型或者加入正则化。
  3. 训练速度慢:如同学生学习时走神,效率低。可能是Batch Size设置太大或者硬件算力不足。可以减小Batch Size、更换更好的GPU或者采用分布式训练。
  4. 梯度爆炸/消失(模型学崩了):就像学生状态异常,无法正常学习。多是因为网络层数太深或者激活函数选择不当。可通过添加梯度裁剪、更换激活函数(如把ReLU换成LeakyReLU)或者使用残差连接来解决。

Tips and Tricks you should know while coding your own Machine Learning Model  | by Shreyak | BlockSurvey | Medium

二、技术实现

模型训练的技术实现步骤可以这样理解:一共分四步,分别是数据预处理、架构搭建、参数调优、迭代验证。

  1. 数据预处理(模型的“九年义务教育”):给模型“喂数据”,先清洗数据、标注信息、划分训练和测试数据集,让模型打好基础。
  2. 架构搭建(“搭脑回路”):选择合适的模型架构(比如Transformer),并初始化参数,就像搭建模型的“大脑框架”。
  3. 参数调优(“刷题+改错”):模型通过损失函数发现错误,用优化器调整参数,结合正则化避免“死记硬背”,类似高三冲刺阶段的反复刷题和改错。
  4. 迭代验证(“周考+月考”):用验证集监控是否“过拟合”(死记硬背),测试集最终检验模型效果,相当于“毕业考”,决定模型能否“合格上岗”。
    How to generate training data for your ML system

PyTorch如何实现Training(模型训练)?PyTorch通过定义模型结构(继承nn.Module并实现前向传播),配置损失函数(如MSELoss)与优化器(如Adam),在训练循环中反向传播更新参数(通过loss.backward()和optimizer.step()),同时利用DataLoader实现数据批量加载与预处理,最终通过迭代优化使模型拟合数据。
PyTorch Wrapper to Build and Train Neural Networks | by Rokas Liuberskis |  Towards AI

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# ====================== 1. 数据准备(数据预处理) ======================
class SimpleDataset(Dataset):
    def __init__(self, num_samples=1000):
        # 随机生成训练数据(特征x,标签y),模拟真实数据分布
        self.x = torch.randn(num_samples, 10)  # 1000个样本,每个样本10维特征
        self.y = torch.randn(num_samples, 1)   # 标签是1维连续值(回归任务)

    def __getitem__(self, idx):
        return self.x[idx], self.y[idx]

    def __len__(self):
        return len(self.x)

# 划分训练集和验证集
train_dataset = SimpleDataset(num_samples=800)
val_dataset = SimpleDataset(num_samples=200)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

# ====================== 2. 模型定义(架构搭建) ======================
class SimpleModel(nn.Module):
    def __init__(self):
        super().__init__()
        # 定义一个简单的全连接网络(类似"搭脑回路")
        self.layers = nn.Sequential(
            nn.Linear(10, 64),  # 输入10维→隐藏层64维
            nn.ReLU(),          # 激活函数
            nn.Linear(64, 1)    # 输出1维(回归任务)
        )

    def forward(self, x):
        return self.layers(x)

model = SimpleModel()  # 初始化模型

# ====================== 3. 配置训练组件(参数调优准备) ======================
criterion = nn.MSELoss()  # 损失函数(计算"扣分")
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # 优化器(负责"改错")

# ====================== 4. 训练循环(参数调优+迭代验证) ======================
num_epochs = 20
for epoch in range(num_epochs):
    # ---------------------- 训练阶段("刷题+改错") ----------------------
    model.train()  # 开启训练模式(影响BN、Dropout等层)
    train_loss = 0.0
    for x, y in train_loader:
        optimizer.zero_grad()  # 清空历史梯度
        outputs = model(x)     # 前向传播(模型预测)
        loss = criterion(outputs, y)  # 计算损失(扣分)
        loss.backward()        # 反向传播(计算梯度)
        optimizer.step()       # 更新参数(改错)
        train_loss += loss.item() * x.size(0)  # 累加批次损失
    train_loss /= len(train_dataset)  # 计算平均训练损失

    # ---------------------- 验证阶段("周考+月考") ----------------------
    model.eval()  # 开启评估模式(固定BN、Dropout等层)
    val_loss = 0.0
    with torch.no_grad():  # 关闭梯度计算(节省内存)
        for x, y in val_loader:
            outputs = model(x)
            loss = criterion(outputs, y)
            val_loss += loss.item() * x.size(0)
    val_loss /= len(val_dataset)  # 计算平均验证损失

    # 打印训练进度
    print(f"Epoch {epoch+1}/{num_epochs} | Train Loss: {train_loss:.4f} | Val Loss: {val_loss:.4f}")

# 训练完成后,可保存模型(类似"毕业")
torch.save(model.state_dict(), "trained_model.pth")
    

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值