1、 什么是Model Context Protocol (MCP)
Model Context Protocol (MCP) 是一个社区共建的开放协议,由 Anthropic 在 2024 年 11 月推出,旨在使 AI 模型,尤其是大型语言模型(LLMs),能够更容易地与外部数据(如文件、数据库或 API)连接。它就像一个通用插头,可以让 AI“与”不同的系统交流,而不需要为每个系统进行定制设置。并且,MCP 是开源的,这意味着任何人都可以使用和改进它,并且它旨在通过访问实时数据来帮助 AI 提供更好的、更相关的答案。
2、MCP解决了什么问题
随着科技浪潮的奔涌向前,人工智能领域迎来爆发式增长,特别是大型语言模型(LLMs)的崛起,为生成类人化文本、攻克复杂难题,以及全方位提升各行业生产力,开拓了前所未有的广阔空间。但发展之路并非坦途,一个长期困扰业界的难题始终存在:这些强大的语言模型,常常与现代工作流程中不断更新的实时数据处于割裂状态。若想将AI与外部系统,如数据库、API接口或各类生产力工具相连接,往往需要进行专门的集成操作,这不仅形成了分散、不连贯的应用环境,还极大地限制了系统的可扩展性与创新能力。
在此背景下,由Anthropic发起的模型上下文协议(MCP)应运而生,作为一项开放标准,它直击行业痛点。MCP致力于通过打造通用且标准化的框架,实现数据的无缝集成,进而重塑AI与各类工具的交互模式。就像TCP/IP协议统一网络通信规则、ODBC改写数据库连接方式一样,MCP志在成为互联互通的AI生态体系根基。从技术层面来看,MCP有效化解了“MxN”集成困境——当M个不同的LLM需要与N个各异的工具建立连接时,传统方式会导致自定义解决方案数量呈几何级数增长,而MCP凭借单一协议,将复杂的集成问题简化为N+M,大幅降低技术实现难度与成本。
MCP 通过统一的 API 将 LLM 连接到各种应用程序
3、MCP是如何工作的
3.1 MCP架构
MCP 是基于客户端-服务器的架构,架构图如下所示:
MCP架构
架构包含三个主要组件:
- MCP Host (宿主应用)
- MCP Client (MCP 客户端)
- MCP Server (MCP 服务器)
- MCP Host主要是人工智能应用程序(例如,Claude 桌面、集成开发环境),负责管理 MCP 客户端,控制权限、生命周期、安全性和上下文聚合
- MCP Clien是Host 内部专门用于与 MCP Server 建立和维持一对一连接的模块。它负责按照 MCP 协议的规范发送请求、接收响应和处理数据。简单来说,MCP Client 是 Host 内部处理 RPC 通信的“代理”,专注于与一个 MCP Server 进行标准化的数据、工具或 prompt 的交换
- 最后,MCP Server暴露特定的功能并提供数据访问,比如实时获取天气、浏览网页等等能力
3.2 MCP Server的关键功能
MCP 服务器提供三种主要功能:
功能 | 描述 |
---|---|
Resources(资源) | 提供给 AI 的数据来源,如文件、数据库记录或 API 响应,为 AI 提供上下文 |
Prompts(提示) | 指导 AI 响应或任务的模板消息或工作流,增强互动 |
Tools(工具) | 用于 AI 执行的功能,如发送电子邮件或与服务交互,以实现可操作性 |
3.3 MCP通信
理解MCP Server与MCP Client之间的通信对于构建自己的 MCP 客户端和服务器端至关重要。这里我们通过一个示例来分析MCP Server与MCP Client是如何通信的
在正式传输消息前首先进行的是功能交换
- 客户端发送初始请求以了解服务器的功能
- 服务器随后会响应其功能详情
例如,当天气 API 服务器被调用时,它可以回复可用的“工具”、“提示模板”和其他资源供客户端使用。一旦此交换完成,MCP Client会确认连接成功,并继续进行进一步的消息交换。我们可以把它类比为TCP通信建立握手的过程,在正式传输消息前,TCP有一个三次握手建立连接的过程,而MCP有一个功能交换的过程。这样做究竟有什么好处呢?
- 在传统的 API 服务中,如果你的 API Server最初需要两个参数(例如, location 和 date 用于天气服务),用户需要将他们的应用程序集成以发送带有这些确切参数的请求
- 但假设你想要添加第三个必需参数(比如 unit ,用于温度单位,如摄氏度或华氏度),那么API 的请求协议就会发生变化。
- 这就意味着所有使用你 API Server的用户都必须更新其代码以包含新参数。如果不更新,他们的请求可能会失败、返回错误或提供不完整的结果
而MCP的这种设计就有效的避免了这种问题,MCP 引入了一种动态且灵活的方法,与传统的 API 形成了鲜明的对比。
-
比如,当客户端(例如,AI 应用程序如 Claude Desktop)连接到 MCP 服务器(例如,你的天气服务)时,它会发送一个初始请求以了解服务器的功能
-
服务器会响应其可用工具、资源、提示和参数的详细信息。比如,如果你的天气 API 最初支持 location 和 date ,服务器会将其作为功能的一部分进行通信。
- 同样,假设后来你添加了一个 unit 参数,MCP 服务器可以在下一次交换中动态更新其能力描述。客户端不需要硬编码或预先定义这些参数,它只需查询服务器当前的能力并相应地进行调整。
- 这样,客户端就可以根据需要实时调整其行为,使用更新的能力(例如,在其请求中包含单位)而无需重写或重新部署代码
这就是MCP通信方式中最重要的一环,有效地提高了程序通信的扩展性
4、小结
模型上下文协议(MCP)在 AI 集成方面迈出了重要一步,通过提供一个标准化的开源框架,MCP 简化了将 LLMs 连接到外部数据源、工具和工作流的过程,消除了复杂的一次性集成的需要。 随着 AI 的不断发展,无缝地与动态的现实世界数据进行交互的能力对于构建真正智能和响应的应用程序至关重要。MCP 为更互联的 AI 生态系统奠定了基础,使开发人员能够以最小的摩擦创建更智能、更强大的 AI 系统。随着越来越多的采用和持续的创新,MCP 有可能成为 AI 工具集成的行业标准,就像 TCP/IP 对网络通信所做的那样。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。