使用Numba JIT编译器中的大坑!!

文章讲述了在使用Numba的JIT编译器加速Python代码时遇到的问题,即JIT不支持可变关键字参数。解决方案是将关键字参数打包成字典形式进行传递。通过修改代码,将关键字参数直接作为字典传递给函数,解决了报错问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 在使用Numba JIT编译器加速代码计算时遇到一个大坑!

具体demo如下:

不使用JIT加速时:

输入:

from numba import jit

def fun1(**worda):
    print(worda)
    fun2(**worda)

def fun2(**wordb):
    print(wordb)
    fun3(**wordb)

def fun3(**wordc):
    print(wordc)


if __name__=="__main__":
    word = {'a':1, 'b':2, 'c':3}
    fun1(**word)

输出:

>>>
{'a': 1, 'b': 2, 'c': 3}
{'a': 1, 'b': 2, 'c': 3}
{'a': 1, 'b': 2, 'c': 3}

使用JIT加速时:

输入:

from numba import jit

def fun1(**worda):
    print(worda)
    fun2(**worda)

def fun2(**wordb):
    print(wordb)
    fun3(**wordb)

@jit
def fun3(**wordc):
    print(wordc)


if __name__=="__main__":
    word = {'a':1, 'b':2, 'c':3}
    fun1(**word)

报错:

>>>
Traceback (most recent call last):
  File "xx.py", line 18, in <module>
    fun1(**word)
  File "xx.py", line 5, in fun1
    fun2(**worda)
  File "xx.py", line 9, in fun2
    fun3(**wordb)
TypeError: too many arguments: expected 1, got 3

错误原因:

找了一万年也没想到时JIT加速器出错,最后把具体问题发给ChatGPT,以下是他给出的原因和解决方法:

Numba不支持在JIT编译函数中使用可变关键字参数,因此需要通过其他方式传递关键字参数。可以将关键字参数打包为字典,然后将字典作为参数传递。

以下是修改后的代码:

from numba import jit

def fun1(worda):
    print(worda)
    fun2(worda)

def fun2(wordb):
    print(wordb)
    fun3(wordb)

@jit
def fun3(wordc):
    print(wordc)


if __name__=="__main__":
    word = {'a':1, 'b':2, 'c':3}
    fun1(word)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值