numba,让python速度提升百倍,和注意事项

Numba是一款JIT编译器,能够将Python函数编译为机器代码,显著提升运行速度,尤其在处理numpy数组和for循环时。通过@jit(nopython=True)装饰器,代码性能可接近C或FORTRAN。Numba适用于大规模科学计算和数组操作,对于优化numpy数组的计算任务非常有效。尽管Numba不适用于所有Python代码,但对于提升for循环效率,速度可提升数十甚至数百倍。
摘要由CSDN通过智能技术生成

numba,让python速度提升百倍

参考原文 https://www.cnblogs.com/zhuwjwh/p/11401215.html

python由于它动态解释性语言的特性,跑起代码来相比java、c++要慢很多,尤其在做科学计算的时候,十亿百亿级别的运算,让python的这种劣势更加凸显。

什么是numba?

numba是一款可以将python函数编译为机器代码的JIT编译器,经过numba编译的python代码(仅限数组运算),其运行速度可以接近C或FORTRAN语言。

使用numba非常简单,只需要将numba装饰器应用到python函数中,无需改动原本的python代码,numba会自动完成剩余的工作。

import numpy as np
import numba
from numba import jit
 
@jit(nopython=True) # jit,numba装饰器中的一种
def go_fast(a): # 首次调用时,函数被编译为机器代码
    trace = 0
    # 假设输入变量是numpy数组
    for i in range(a.shape[0]):   # Numba 擅长处理循环
        trace += np.tanh(a[i, i])
    return a + trace

numba适合科学计算
numpy是为面向numpy数组的计算任务而设计的。

在面向数组的计算任务中,数据并行性对于像GPU这样的加速器是很自然的。Numba了解NumPy数组类型,并使用它们生成高效的编译代码,用于在GPU或多核CPU上执行。特殊装饰器还可以创建函数,像numpy函数那样在numpy数组上广播。

什么情况下使用numba呢?

使用numpy数组做大量科学计算时
使用for循环时

学习使用numba

第一步:导入numpy、numba及其编译器

import numpy as np
import numba
from numba import jit

第二步:传入numba装饰器jit,编写函数

# 传入jit,numba装饰器中的一种
@jit(nopython=True) # 强烈建议您始终使用nopython = True
def go_fast(a): # 首次调用时,函数被编译为机器代码
    trace = 0
    # 假设输入变量是numpy数组
    for i in range(a.shape[0]):   # Numba 擅长处理循环
        trace += np.tanh(a[i, i])  # numba喜欢numpy函数
    return a + trace # numba喜欢numpy广播

强烈建议您始终使用nopython = True。

nopython = True选项要求完全编译该函数(以便完全删除Python解释器调用),否则会引发异常。这些异常通常表示函数中需要修改的位置,以实现优于Python的性能。强烈建议您始终使用nopython = True。

第三步:给函数传递实参

# 因为函数要求传入的参数是nunpy数组
x = np.arange(100).reshape(10, 10)
# 执行函数
go_fast(x)

在numba加速下,代码执行时间为3.63微秒/循环。不经过numba加速,代码执行时间为136微秒/循环,两者相比,前者快了40倍。

numba让python飞起来

前面已经对比了numba使用前后,python代码速度提升了40倍,但这还不是最快的。

这次,我们不使用numpy数组,仅用for循环,看看nunba对for循环到底有多钟爱!

# 不使用numba的情况
def t():
    x = 0
    for i in np.arange(5000):
        x += i
    return x
%timeit(t())

输出:408 µs ± 9.73 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

# 使用numba的情况
@jit(nopython=True)
def t():
    x = 0
    for i in np.arange(5000):
        x += i
    return x
%timeit(t())

输出:1.57 µs ± 53.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

使用numba前后分别是408微秒/循环、1.57微秒/循环,速度整整提升了200多倍!

结语

numba对python代码运行速度有巨大的提升,这极大的促进了大数据时代的python数据分析能力,对数据科学工作者来说,这真是一个lucky tool !

当然numba不会对numpy和for循环以外的python代码有很大帮助,你不要指望numba可以帮你加快从数据库取数,这点它真的做不到哈。

以上内容来自原文.https://www.cnblogs.com/zhuwjwh/p/11401215.html

补充

对于已经写好的代码想要提高性能必须在函数之上 添加 @jit(nopython=True) 装饰器
但是这么做往往会提示一大堆的错误, 这个时候不要担心提示出错.
修改的逻辑也非常简单.
由于是换了一个编译器 , 自然是不能把 加了@jit(nopython=True) 装饰器 的函数当做普通的 python 代码 来对待. 我下面称之为numba代码吧.

这里面有几个要求.
第一个, 追求极致性能的情况下最好不要访问python的对象. 也就是说, 里面的代码都应该是回到刀耕火种的年代, 类似C语言那样.
但是可以访问numpy的数组.

第二个, 凡是用到List 列表和Set的要替换成 numba的List 和 Set 当然里面已经实现了还有Dict
目前Set并未实现, 后面会实现. 先自己用List实现吧.

from numba.typed import List,Set,Dict

具体如何用请看下面的说明.
http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-reflection-for-list-and-set-types

其它的暂时未用到很深入, 只说这2点吧.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值