解决numba不支持dict类型的问题

0.44的numba会用numba.typed.Dict()替换掉原来python自带的dict类型。

举个栗子:

#定义一个numba支持的dict类型
numba_dict= Dict.empty(
    key_type = types.UniTuple(types.int64,2),#numba_dict支持元祖类型
    value_type = types.int64[:],
)

#定义一个普通的dict类型
dict = {(3,55):np.array([1480, 1527, 1528, 1565, 1566]),(3,66):np.array([1480, 1527, 1528, 1565, 1566])}

#普通类型dict赋值给numba支持的dict
for i in dict:
    list = []
    for j in dict[i]:
        list.append(j)
    numba_dict[i] = np.array(list).astype(np.int64)


@njit
def sum_dict(dict_test):
    sum = 0
    for i in dict_test:
        count= dict_test[i].sum()
        sum+=count

    return sum

 下面来验证一下numba对于普通dict 和 numba_dict 的支持情况:

print(sum_test(dict))



#发现报错,报错信息如下
def sum_dict(dict_test):
    sum = 0
    ^
This error may have been caused by the following argument(s):
- argument 0: cannot determine Numba type of <class 'dict'>
print(sum_dict(numba_dict))

15332



正常得出结果!

如果在循环中运行的代码越来越慢,可能是由于循环内部的某些操作导致的效率问题。在这种情况下,可以考虑以下几种方法来优化循环: 1. 避免重复计算:检查循环内是否有重复计算的操作,如果有,可以将这些操作移出循环,并将结果保存在变量中以供后续使用。 2. 向量化操作:利用NumPy、Pandas等库的向量化操作,可以将循环中的元素级操作转换为数组或矩阵操作,提高计算效率。 3. 使用适当的数据结构:根据实际情况选择合适的数据结构,例如使用集合(set)来快速查找或去重,使用字典(dict)来快速查找和更新键值对等。 4. 减少函数调用:函数调用会带来一定的开销,尽量减少循环内部的函数调用次数,可以将函数调用移到循环外部,或者将多个函数合并为一个函数。 5. 使用并行计算:如果循环内部的操作是相互独立的,可以考虑使用并行计算来加速循环。Python提供了多线程、多进程和异步编程等方式来实现并行计算。 6. 使用专门优化的库:对于特定的计算任务,可以使用专门优化的库来替代纯Python的循环,例如NumPy、Numba、Cython等。 7. 使用缓存:如果循环内部有大量的重复计算,可以使用缓存来保存已经计算过的结果,避免重复计算。 以上是一些常见的优化循环的方法,具体的优化策略需要根据具体情况进行选择。在优化之前,建议先使用性能分析工具(如cProfile)来确定循环中哪些操作耗时较多,然后有针对性地进行优化。 希望这些建议对您有所帮助!如有任何疑问,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值