Ubuntu环境配置
1.Ubuntu搭建
2.安装nvidia驱动
3.安装cuda11.1
利用nvcc–version进行验证
4.安装cudnn
5.安装opencv
6.安装darknet
(1)下载darknet代码
(2)下载YOLO配置文件
1.#获取源码
git clone https://github.com/pjreddie/darknet
cd darknet
make
2.#获取预训练的参数权重
wget https://pjreddie.com/media/files/yolov3.weights
3.#执行
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
也可以使用
./darknet detect cfg/yolov3.cfg yolov3.weights
然后再选择 data/dog.jpg或者data/person.jpg
默认情况下,YOLO仅显示以置信度检测到的对象为0.25或者更高的,可以通过修改阈值,来显示。
例如:
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg -thresh 0
(利用CPU检测的图片大概20秒左右,如果ubuntu环境下没有安装opencv的话,则在darknet文件夹下的predictions.jpg即是检测后的结果。)
4#利用GPU进行图像检测
(比单独使用CPU要快500倍,前提:具有NVIDIA 显卡、显卡驱动已安装、CUDA已安装、CUDNN已安装。)
1)修改darknet根目录下的Makefil