Ubuntu环境配置

本文详细介绍了在Ubuntu系统中配置深度学习环境的过程,包括安装NVIDIA驱动、CUDA 11.1、CUDNN、OpenCV以及Darknet。重点讲述了Darknet的安装与使用,如检测图像、视频,以及训练自定义数据集。同时,提到了在不同GPU配置下运行YOLOv3模型的步骤,并提供了训练YOLO模型在Pascal VOC和COCO数据集上的指南。
摘要由CSDN通过智能技术生成

Ubuntu环境配置
1.Ubuntu搭建
2.安装nvidia驱动
3.安装cuda11.1
利用nvcc–version进行验证
4.安装cudnn
5.安装opencv
6.安装darknet
(1)下载darknet代码
(2)下载YOLO配置文件
1.#获取源码
git clone https://github.com/pjreddie/darknet
cd darknet
make
2.#获取预训练的参数权重
wget https://pjreddie.com/media/files/yolov3.weights
3.#执行
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
也可以使用
./darknet detect cfg/yolov3.cfg yolov3.weights
然后再选择 data/dog.jpg或者data/person.jpg
默认情况下,YOLO仅显示以置信度检测到的对象为0.25或者更高的,可以通过修改阈值,来显示。
例如:
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg -thresh 0

(利用CPU检测的图片大概20秒左右,如果ubuntu环境下没有安装opencv的话,则在darknet文件夹下的predictions.jpg即是检测后的结果。)
4#利用GPU进行图像检测
(比单独使用CPU要快500倍,前提:具有NVIDIA 显卡、显卡驱动已安装、CUDA已安装、CUDNN已安装。)
1)修改darknet根目录下的Makefil

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值