视觉
追梦AI
这个作者很懒,什么都没留下…
展开
-
深度学习:鞍点与海森矩阵的问题
概述:在深度学习的过程当中,我们通常会碰到优化这个问题,但是优化结果往往不是最优解,这是因为你认为的梯度为0的点,不一定是全局最小值的点,还有可能是局部最小值的点,即鞍点。首先来看看最优化的定义:对于目标函数f(x),如果f(x)在x上的值比在x邻近的其他点的值更小,那么f(x)可能是一个局部最小值(local minimum)。如果f(x)在x上的值是目标函数在整个定义域上的最小值,那么f(x)是全局最小值(global minimum)。比如在下面这张图中:这张图中存在两个梯度为0的点,但是一个原创 2021-08-17 15:31:22 · 1579 阅读 · 8 评论 -
tensorflow:使用mask-RCNN训练自己的数据集
一:所需环境numpyscipyPillowcythonmatplotlibscikit-imagetensorflow>=1.3.0keras>=2.0.8opencv-pythonh5pyimgaugIPython[all]快速安装tensorflow-gpu链接:https://blog.csdn.net/m0_49100031/article/details/119534426?spm=1001.2014.3001.5502二:准备数据labelme数据标原创 2021-08-09 12:15:19 · 1341 阅读 · 8 评论 -
windows下Anaconda安装tensorflow-gpu(无需手动安装CUDA和cudnn)
1.打开conda Prompt添加清华镜像源conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/conda config --set show_channel_urls yes2.创建环境新建环境:conda cre原创 2021-08-09 11:39:59 · 381 阅读 · 1 评论 -
python+opencv图像处理
基于轮廓的图像分割:按照轮廓的面积进行排序,取前几个面积最大的轮廓,画出并且单独显示出来。import cv2import numpydef func(img): gray = cv2.cvtColor(img,COLOR_BGR2RAGY) #灰度处理 kernel = np.ones((3,3),np.uint8) # 进行开闭运算,可视情况处理 binary = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) closing原创 2021-06-22 16:12:36 · 188 阅读 · 0 评论