python+opencv图像处理

本文介绍了一种基于轮廓的图像分割方法,通过计算并按面积排序轮廓,选取面积最大的前几个,然后逐一绘制并显示这些轮廓。使用OpenCV库实现,包括灰度处理、形态学操作、阈值化、轮廓查找及排序,展示了如何提取关键区域并进行可视化。
摘要由CSDN通过智能技术生成

基于轮廓的图像分割:
按照轮廓的面积进行排序,取前几个面积最大的轮廓,画出并且单独显示出来。

import cv2
import numpy

def func(img):

	gray = cv2.cvtColor(img,COLOR_BGR2RAGY) #灰度处理
	kernel = np.ones((3,3),np.uint8) 
	# 进行开闭运算,可视情况处理
	binary = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel)
    closing = cv2.morphologyEx(binary,cv2.MORPH_CLOSE,kernel)
    # 使用自适应阈值(局部邻域块的高斯加权和)
    th3 = cv2.adaptiveThreshold(
        gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 17, 7)
    contours, hierarchy = cv2.findContours(th3, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    # 对轮廓进行排序,reverse为True表示降序
    contours.sort(key=cnt_arcLength, reverse=True)
    contourT = contours[:9]
    masks = []
    # 分别画出九个轮廓
    for i in range(len(contourT)):
        black = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
        cv2.drawContours(black, contourT, i, 255, cv2.FILLED)
        contour_points = contour_cord(contourT[i])
        cv2.imshow('cnts', black)
        masks.append(black)
	# 对每个轮廓进行和操作
    for i in range(len(contourT)):
        res = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=masks[i])
        cv2.imshow('res' + str(i), res)

    cv2.drawContours(img, contourT, -1, (255, 0, 0), 2)
    cv2.imshow('cnt', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    print(contour_points.tolist())
    return contourT, contour_points


if __name__ == '__main__':
    inputimg = cv2.imread('men.jpg')
    func(inputimg)

结果如下:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
剩余图片不一一展示,有兴趣的小伙伴可以自行尝试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值