Gavin老师Transformer直播课感悟 - 基于Retrieval的具有Fine-grained架构的对话系统(二)

一、Related work介绍

        最近的研究多集中于在基于retrieval的多轮对话系统中,当一个包含多轮对话的上下文被提供时,系统应该如何选择最合适的响应,如使用BERT对上下文序列进行编码,产生一个dense vector,然后把这个vector同一组可选响应的矩阵进行相乘,比较它们的相关度,然后使用softmax得到概率分布,从而选出一个概率最高的作为系统的响应。在对比这些研究时发现,有一种方式是使用称为IRC语料库的基准数据集和一个基于RNN网络的模型,另一种方式是使用一种基于dual encoder的模型来试图有效地对上下文进行编码和使用LSTM和CNN作为encoder对响应部分进行编码,这里提到的dual encoder可以看做是有左右两个encoder部分,使用左侧对上下文进行编码,而使用右侧对响应部分进行编码,上下文是指当前用户和系统交互的内容,通过编码形成一个dense vector。随着注意力机制的出现,注意力机制被用于对话系统来选择系统响应。譬如通过对话中的多个交互blocks来在上下文和响应之间进行一种深度的交互,从而通过对话状态控制器来改善训练表现。

        论文提到使用开源的BERT模型,具有12层,12个注意力头,768维度的hidden state。BERT有两个训练目标:MLM和NSP,MLM使用掩码机制来进行预测,而NSP是针对给定的两个文本序列A和B,训练模型来决定序列B是否在序列A之后(指位置是否“相邻”),模型把A和B作为输入并使用token [SEP] 进行分隔,然后使用segment embedding 的“0”代表序列A,而“1”代表序列B,那么,通过使用token [CLS] 来表达序列A和B之间的关系。BERT提供了表达A和B两种数据关系的框架,如在问答场景下,A表示问题部分,而B表示答案部分。由于BERT的NSP被很多人诟病,所以出现了AL-BERT这种模型,它使用SOP (sentence ordering prediction)来代替NSP作为训练目标,SOP用于区分序列A和B的顺序是否是正确的或者它们是否顺序被颠倒了。

        Post-training方法可以帮助模型理解在一个响应选择任务中引入的特定的领域。除了能适应领域之外,这种方法还有起到数据增强的优点,因为它能通过在对话中已有数据之间的相互作用来制造更多的数据,这些数据可能是正样本,也可能是负样本。然而这种方法没有反映出会话的特征,因为它仅仅是沿用了BERT的预训练方法。为了解决这个问题,论文提出了一种新的post-training方法来适应多轮对话的特点。

二、模型介绍

  1. 问题域的建立(Problem Formalization)

假设数据集D由Context Ci,response Ri,ground truth label Yi构成,

上下文context是一个对话序列(utterance sequence),表示为Ci = {u1,u2,…,uM}, 这里的M是context长度的最大值。第j个话语uj = {Wj,1 , Wj,2,  …, Wj, L}, 包含了L个tokens,L是这个序列的最大长度。对于每个response,ri是表示单个的话语,yi表示给定triple的逻辑标签,即是0或者1,如ri是ci的正确的响应,那么yi  = 1,否则yi  = 0。对于给定的context-response pair(ci, ri),上下文ci和响应ri的匹配度通过函数g(ci, ri) 获得。

    2. Fine-tuning BERT for Response Selection

        现有BERT模型的输入格式(x)表示为([CLS], sequence A, [SEP], sequence B, [SEP]),这里的[CLS]和[SEP]是特殊token。

        为了测量一个context-response pair的匹配程度,通过使用序列A作为上下文和使用序列B作为响应来构建输入, 另外,在每个话语的后面添加了一个token [EOU] (end of utterance)用于在上下文中区分它们,BERT对于响应选择的输入格式表示如下:

        X通过position,segment,token 的embeddings之和(sum操作)来表示输入vector。

        BERT通过使用自注意力机制对context和response之间的注意力进行计算,T[cls]用来表示context-response pair的全局信息,最后的分数g(c, r)表示上下文和响应的匹配程度,通过把T[cls]传入一个单层的神经网络而获得(通过矩阵线性处理)。Wfine是一个任务特定的用于fine-tuning的可训练的参数矩阵。

        最后模型的权重通过cross-entropy loss函数进行更新:

   3.  Fine-grained Post-training

        为了改进通过有效抓取多轮对话信息来选择一个恰当的响应,使用了一种简单的但是强有力的post-training方法,这种细粒度的post-training方法对话语相关度进行区分 。有两种学习策略,即把整个对话划分为多个short context-response pair和使用URC作为训练目标之一,通过前一种策略,模型可以学习到对话内部相关话语之间的交互作用; 通过URC,模型可以学习语义级别的相关性,以及话语之间的连贯性。

       

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值