1、双边滤波为什么能保留边缘?
高斯滤波考虑像素间空间位置上的关系,因此会丢失边缘信息。双边滤波叠加了像素值的滤波,对于保留边缘更有效。
- 在图像的平坦区域,像素值变化很小,那么像素差值接近于0,对应的像素范围域权重接近于1,此时空间域权重起主要作用,相当于进行高斯模糊;
- 在图像的边缘区域,像素值变化很大,那么像素差值大,对应的像素范围域权重变大,即使距离远空间域权重小,加上像素域权重总的系数也较大,从而保护了边缘的信息。
2、池化层的反向传播怎么实现的?
- 最大池化层:最大值传向上一层对应的神经元,其他部分为0
- 平均池化层:平均分配到上一层所有神经元中。
3、什么是聚类?聚类的应用场景?
聚类是指根据一定的准则,把一份事物按照这个准则归纳成互不重合的几份,机器学习中,聚类指按照一个标准,这个标准通常是相似性,把样本分成几份,是得相似程度高的聚在一起,相似程度低的互相分开。
聚类的应用场景,求职信息完善、搜索引擎查询、图像分割等。
4、什么是核函数?
核函数是将线性不可分的特征映射到高位特征空间,从而让支持向量机在这个高维空间线性可分,也就是使用核函数可以向高维空间映射并解决非线性的分类问题。包括线性核函数,多项式核函数,高斯核函数等,其中高斯核函数最为常用。
5、深度学习框架TensorFlow中常见的核函数都有哪些?
线性核、多项式核、高斯核。
特征维数高选择线性核
样本数量可观、特征少选择高斯核(非线性核)
样本数量非常多选择线性核(避免造成庞大的计算量)