-
均方误差MSE
给定一个大小为m*n的原图I和生成图K,计算均方误(MSE)定义为:的干净图像和噪声图像,均方误差定义为:
#原图为I,生成图为K
#pytorch ——直接调用torch.nn.MSELoss()函数
function = torch.nn.MSELoss()
mse_loss = funciton(I, K)
#tensorflow 1.x
mse_loss = tf.keras.losses.MSE(I, K)
#tensorflow 2.x
mse_loss = tf.losses.MSE(I, K)
-
LPIPS
学习感知图像块相似度(Learned Perceptual Image Patch Similarity, LPIPS)也称为“感知损失”(perceptual loss),用于度量两张图像之间的差别,来源于论文《The Unreasonable Effectiveness of Deep Features as a Perceptual Metric》。
论文地址:
https://arxiv.org/pdf/1801.03924.pdf
代码地址:
pytorch:https://github.com/richzhang/PerceptualSimilarity
tensorflow:https://github.com/alexlee-gk/lpips-tensorflow
计算相似度需逐层计算网络输出的对应channel的Cos Distance,然后对得到的distance进行平均(所有层,空间维度),LPIPS主要是把两个Cos Distance作为网络的输入,然后用Cross Entropy Loss训练网络学习2AFC。
计算与
之间的距离
:给定不同的BaseNet F,首先计算深度嵌入,规格化通道维度中的激活,用向量
缩放每个通道,取
距离,然后对空间维度和所有层次求平均。
从层提取特征堆并在通道维度中进行单元标准化。通过
缩放激活通道维并计算
距离
,在空间上取平均,在层上求和。
#pytorch 求LPIPS
import torch
import lpips
import os
use_gpu = False # Whether to use GPU
spatial = True # Return a spatial map of perceptual distance.
# Linearly calibrated models (LPIPS)
loss_fn = lpips.LPIPS(net='alex', spatial=spatial) # Can also set net = 'squeeze' or 'vgg'
# loss_fn = lpips.LPIPS(net='alex', spatial=spatial, lpips=False) # Can also set net = 'squeeze' or 'vgg'
if(use_gpu):
loss_fn.cuda()
## Example usage with dummy tensors
rood_path = r'D:\Project\results\faces'
img0_path_list = []
img1_path_list = []
## path in net is already exist
'''
for root, _, fnames in sorted(os.walk(rood_path, followlinks=True)):
for fname in fnames:
path = os.path.join(root, fname)
if '_generated' in fname:
im0_path_list.append(path)
elif '_real' in fname:
im1_path_list.append(path)
'''
dist_ = []
for i in range(len(img0_path_list)):
dummy_img0 = lpips.im2tensor(lpips.load_image(img0_path_list[i]))
dummy_img1 = lpips.im2tensor(lpips.load_image(img1_path_list[i]))
if(use_gpu):
dummy_img0 = dummy_img0.cuda()
dummy_img1 = dummy_img1.cuda()
dist = loss_fn.forward(dummy_img0, dummy_img1)
dist_.append(dist.mean().item())
print('Avarage Distances: %.3f' % (sum(dist_)/len(img0_path_list)))
需要注意的是tensorflow版本需要下载.pb数据文件:
http://rail.eecs.berkeley.edu/models/lpips/
#tensorflow 求LPIPS
import numpy as np
import tensorflow as tf
import lpips_tf
batch_size = 32
image_shape = (batch_size, 64, 64, 3)
image0 = np.random.random(image_shape) #read real image
image1 = np.random.random(image_shape) #read generate image
image0_ph = tf.placeholder(tf.float32)
image1_ph = tf.placeholder(tf.float32)
distance_t = lpips_tf.lpips(image0_ph, image1_ph, model='net-lin', net='alex')
with tf.Session() as session:
distance = session.run(distance_t, feed_dict={image0_ph: image0, image1_ph: image1})