上一篇讲的贝叶斯不完全信息博弈的重点其实就是引入了type,以及作为common Knowlegde的概率分布。
推广
上篇直接将p视为1/2来算的,这次代p,整体思路是一样的:
type 1:
3,4 | 1,0 |
---|---|
4,3 | 2,0 |
type 2: | |
6,2 | 0,4 |
– | – |
5,1 | -1,4 |
若参与者选择策略A: | |
p ∗ 3 + ( 1 − p ) ∗ 1 p*3+(1-p)*1 p∗3+(1−p)∗1 | |
若参与者选择策略B: | |
0 + 4 ( p ) 0+4(p) 0+4(p) |
不完全信息古诺模型
回忆下:古诺模型
核心:单纯的产量竞争
案例1
市场中存在两个生产同样商品的企业{企业1,企业2},其产量分别为 q 1 , q 2 q_1,q_2 q1,q2,市场上的总产量为 Q = q 1 + q 2 Q=q_1+q_2 Q=q1+q2,市场价格为P=16-Q(Q≤16),企业2的边际生产成本为4,即 C ( q 2 ) = 4 q 2 C(q_2)=4q_2 C(q2)=4q2,而企业1的边际成本为私有信息,但已知其概率分布:企业1以1/3的概率为低边际成本 C ( q 1 ; L ) = 2 q 1 C(q_1;L)=2q_1 C(q1;L)=2q1,以2/3的概率为高边际成本 C ( q 1 ; H ) = 6 q 1 C(q_1;H)=6q_1 C(q1;H)=6q1;
给定企业2的策略也就产量
q
2
q_2
q2,记参与人1的最优反应为
(
q
1
(
L
)
,
q
1
(
H
)
)
(q_1(L),q_1(H))
(q1(L),q1(H))
1.对于低成本的类型来说,给定企业2的策略,企业1的最优反应为:
m
a
x
q
1
(
L
)
(
16
−
q
1
(
L
)
−
q
2
)
q
1
(
L
)
−
2
q
1
(
L
)
max_{q_1(L)}(16-q_1(L)-q_2)q_1(L)-2q_1(L)
maxq1(L)(16−q1(L)−q2)q1(L)−2q1(L)
二次方程求最值得到最优反应:
q
1
(
L
)
=
14
−
q
2
2
q_1(L)=\frac{14-q_2}{2}
q1(L)=214−q2
2.对于高成本的类型来说,给定企业2的策略,企业1的最优反应为:
m
a
x
q
1
(
L
)
(
16
−
q
1
(
L
)
−
q
2
)
q
1
(
L
)
−
6
q
1
(
L
)
max_{q_1(L)}(16-q_1(L)-q_2)q_1(L)-6q_1(L)
maxq1(L)(16−q1(L)−q2)q1(L)−6q1(L)
二次方程求最值得到最优反应:
q
1
(
L
)
=
10
−
q
2
2
q_1(L)=\frac{10-q_2}{2}
q1(L)=210−q2
3.给定参与人1的策略
(
q
1
(
L
)
,
q
1
(
H
)
)
(q_1(L),q_1(H))
(q1(L),q1(H)),参与人2的最优反应为
q
2
q_2
q2:
m
a
x
q
2
1
3
[
(
16
−
q
1
(
L
)
−
q
2
)
q
2
−
4
q
2
]
+
2
3
[
(
16
−
q
1
(
H
)
−
q
2
)
q
2
−
4
q
2
]
max_{q_2}\frac{1}{3}[(16-q_1(L)-q_2)q_2-4q_2]+\frac{2}{3}[(16-q_1(H)-q_2)q_2-4q_2]
maxq231[(16−q1(L)−q2)q2−4q2]+32[(16−q1(H)−q2)q2−4q2]
求最值得最优反应:
q
2
=
12
−
q
1
(
L
)
+
2
q
1
(
H
)
3
2
q_2=\frac{12-\frac{q_1(L)+2q_1(H)}{3}}{2}
q2=212−3q1(L)+2q1(H)
则得到不完全信息古诺模型得最优反应函数得策略组合 ( ( q 1 ∗ ( L ) , q 1 ∗ ( H ) ) , q 2 ∗ ) ((q_1^*(L),q_1^*(H)),q_2^*) ((q1∗(L),q1∗(H)),q2∗)为贝叶斯纳什均衡,也就是上述得到得三个最优解联立一下,就可以得到 q 2 = 38 9 q_2=\frac{38}{9} q2=938,另两个值也能算出来。
下边,假如说已知企业1一定会选择低类型,那么可以找出纳什均衡
q
1
(
L
)
q_1(L)
q1(L)的值为
16
3
\frac{16}{3}
316大于不完全信息博弈,完全信息与不完全信息博弈相比,企业1会生产更少的商品。
为撒?因为在不完全信息下,企业1知道企业2会根据期望收益来指定产量,相比纯低成本,不完全信息又会使企业2向企业1成本高的方向偏移,所以相对来说企业2就会生产更多的产品从而获得更多的期望收益,而企业1也知道企业2会生产比完全信息时更多的产品,所以1就会相比完全信息生产少的产品(回忆下双寡头古诺模型的均衡,一个多了另一个会少)。反之,当企业1选择高类型时,同理。
普适案例
上边的案例都用特殊值代替了,这个假设
P
(
Q
)
=
α
−
Q
P(Q)=\alpha -Q
P(Q)=α−Q,企业2选
C
L
C_L
CL的概率为
θ
\theta
θ,选
C
H
C_H
CH的概率为
1
−
θ
1-\theta
1−θ,然后跟上边一样列式子,计算最优如下:
通过结果可以发现:相比完全信息,当企业2选择高成本时,会选择生产更多;低成本时会选择生产更少
不完全信息使得企业2相对来说有优势,企业1选择适中的产量。