金币+小红的ABC+木棍游戏+空调遥控(枚举)

本文探讨了几个编程问题的解决方案,包括暴力加和金币计数、回文字符串判断、木棍游戏策略、空调遥控优化和全排列生成。通过栈、二进制表示、动态规划和next_permutation等技巧,展示了信息技术中算法与数据结构的巧妙应用。
摘要由CSDN通过智能技术生成

金币

在这里插入图片描述

思路

直接暴力加和就行,到达对应天数时停止

代码

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int k;
    cin>>k;
    int sum=0,day=0;
    for(int i=1;;i++)
    {
        for(int j=1;j<=i;j++)
        {
            day++;
            sum+=i;
            if(day>=k)
            {
                cout<<sum;
                return 0;
            }
        }

    }
    return 0;
}

小红的ABC

在这里插入图片描述

思路

一看到回文,第一反应是栈,但是这个题貌似跟栈没太大关系。
这个题需要枚举字串,判断是否是回文
可以优化的是:
从长度较少的字串开始枚举,找到即停止;
另外注意这个题对字串的定义是必须相连的字符;

代码

#include<bits/stdc++.h>
using namespace std;
bool check(string s,int b,int e)
{
    int len=s.size();
    for(int i=b;i<len;)
    {
        for(int j=e;j>=0;)
        {
            if(s[i]!=s[j])
            {
                return false;
            }
            else
            {
                i++;
                j--;
                if(i>=j)
                {
                    return true;
                }
            }
        }
    }
    return true;
    
}

int main()
{
    string s;
    cin>>s;
    int a=2;
    int len=s.size();
    bool q;
    for(a=2;a<=len;a++)
    {
        for(int i=0;i+a<=len;i++)
        {
            q=check(s,i,i+a-1);
            if(q)
            {
                cout<<a;
                return 0;
            }
        }
    }
    cout<<-1;
    return 0;
}

木棍游戏

在这里插入图片描述

思路

木棍有两种状态:用或不用,借助二值思想,可以用二进制0、1来对应表示用或不用,每条边都用一个n位的二进制表示,需要注意的是木棍不能重复使用

代码

通过率为90.9,还没有找到是什么原因

#include<bits/stdc++.h>
using namespace std;
//海伦公式,直接由三边长求面积
double area(long long a,long long b,long long c)
{
    double p=(a+b+c)/2;
    double s;
    s=sqrt(p*(p-a)*(p-b)*(p-c));
    return s;
}
bool tri(long long a,long long b,long long c)
{
    if(a+b<=c||a+c<=b||b+c<=a)
    {
        return false;
    }
    else
        return true;
}
long long getlen(long long s,int *len,int n)
{
    long long l=0;
    for(int i=n-1;i>=0;i--)
    {
        if(s&1)
        {
            l+=len[i];
        }
        s>>=1;
    }
    return l;

}
int main()
{
    int n;
    cin>>n;
    int*len=new int[n];
    for(int i=0;i<n;i++)
    {
        cin>>len[i];       
    }
    long long uper=1;
    for(int i=1;i<n;i++)
    {
        uper<<=1;
        uper++;
    }
    long long a,b,c;
    double max=-1;
    double s=-1;
    for(long long i=0;i<=uper;i++)
    {
        a=getlen(i,len,n);
        if(a==0)continue;
        for(long long j=i+1;j<=uper;j++)
        {
            b=getlen(j,len,n);
            if(b==0)continue;
            for(long long k=j+1;k<=uper;k++)
            {
                c=getlen(k,len,n);
                if(c==0)continue;
                if(i&j||i&k||j&k)continue;
                if(tri(a,b,c))
                {
                    s=area(a,b,c);
                    if(s>max)
                    {
                        max=s;
                    }
                }             
            }
        }
    }
    
    if(max==-1)
    {
        cout<<-1;
    }
    else
        cout<<fixed<<setprecision(1)<<max;
    delete []len;
    return 0;
}

思路2

这个题还有另一种枚举方式,即通过dfs,这里直接贴上题解的代码

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>

using namespace std;

const int N = 10;
int q[N];
double res;
int n;
bool st[N];


double ju(double a, double b, double c)  // 求三角形面积
{
    double p = (a + b + c) / 2;
    double s = sqrt(p * (p - a) * (p - b) * (p - c));
    return s;
}

void dfs(int a, int b, int c, int index)  // 枚举每种情况
{
    if (a + b > c && a + c > b && b + c > a)
    {
        res = max(res, ju(a, b, c));
    }
    
    for (int i = index; i <= n; i++)
    {
        if (!st[i])
        {
            st[i] = true;
            dfs(a + q[i], b, c, index + 1);  // 分别加到三条边上
            dfs(a, b + q[i], c, index + 1);
            dfs(a, b, c + q[i], index + 1);
            st[i] = false;
            dfs(a, b, c, index + 1);  // 都不加
        }
        
    }
}



int main()
{
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> q[i];
    
    dfs(0, 0, 0, 1);
    
    if (res > 0) printf("%.1lf", res);
    else cout << -1;
    
    return 0;
}

空调遥控

题目

在这里插入图片描述

思路

室内温度为k时,|a-k|<p时,即k-p<a<p+k时,a-p<k<a+p对应的运动员能进入训练状态,所以直接枚举所有的k,看哪个在范围里的人多;
然后就是要思考下怎么减少所需枚举的个数,
分析下可以理解,使范围的上限或者下限刚好在某个成员的需要温度时,才可能是优解,否则会有浪费

代码

#include<bits/stdc++.h>
using namespace std;
int getnum(int k,int p,int*a,int n )
{
    int q,b;
    q=lower_bound(a,a+n,k-p)-a;
    b=upper_bound(a,a+n,k+p)-a;
    return b-q;
}
int main()
{
    int n,p;
    cin>>n>>p;
    int k;
    int *a=new int[n];
    for(int i=0;i<n;i++)
    {
        cin>>a[i];
    }
    sort(a,a+n);
    int num=-1;
    int max=-1;
    for(int i=0;i<n;i++)
    {
        k=a[i]+p;
        num=getnum(k,p,a,n);
        if(num>max)
        {
            max=num;
        }
    }
    cout<<max;
    return 0;
}

next_permutation函数

STL中的next_permutation函数可以用于生成全排列
且next_permutation是按照字典序进行排列的

sort
 do{
           for(int i=0;i<n;i++)
               cout<<a[i]<<end;
     }while(next_permutation(a,a+n));


//注意,数组提前排序和没有排序的输出是不一样的,因为其是按照排序来请全排列的,如果提前没有排序,可能无法输出所有全排列
//next_permutation()也可以加cmp参数
//string类全排列
#include <bits/stdc++.h>
using namespace std;
int main()
{
    string line="bcad";
    sort(line.begin(),line.end());
    cout<<line<<endl;
    while(next_permutation(line.begin(),line.end()))
        cout<<line<<endl;
	return 0;
}

举例

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int a[8];
    for(int i=0;i<8;i++)
    {
        a[i]=i+1;
    }
    do
    {
        for(int i=0;i<8;i++)
        {
            cout<<a[i]<<' ';
        }
        cout<<endl;
    }while(next_permutation(a,a+8));

    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值