【Python】海洋潮汐与水位控制 回归分析法计算验潮站长期平均海面

文章介绍了使用回归分析法进行海平面预测的原理和算法步骤,包括线性关系假设、观测方程组的构建以及法方程的求解。通过Python程序实现了数据处理和计算,展示了以10天、15天和30天为时段的误差分析。结果表明,时段越长,预测精度越高,建议使用超过10天的时段进行计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、原理以及算法步骤

1.1回归分析法

  回归分析法,也称线性关系最小二乘法,基本原理是假定两站的短期距平具有比例关系。设比例为k,则有:

 根据之前所学的关于距平的公式:

将(1.2)代入(1.1)中,得:

上式中k未知,需要进一步假设两站的长期平均海面之间为线性比例关系,比例系数仍然为k,则有:

上式中C为位置常数项。将上式带入式(1.3)中,整理得到短期平均海面之间的关系如下 

 对比式(1.4)和(1.5)可知,此时两站的长期平均海面与短期平均海面具有相同的线性关系。

1.2算法步骤

  1. 构造观测方程组

  计算两站每天的日平均海面,设为MSLA,MSLB

,其中i=1,2,...,n。式(1.5)是估计k与C的观测方程,将每天的日平均海面代入(1.5)得到观测方程:

 n天的日平均海面序列构建观测方程组如下:

 根据间接平差的原理,观测方程组为:

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学测绘的小杨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值