Places365实践

本文详细介绍了在Places365数据集上进行图像特征提取的实践过程,包括环境配置、预训练模型的获取与处理,以及如何从ResNet18模型中提取与图像相关的512维特征向量。读者将学习到如何利用预训练模型进行特征提取,并理解模型结构对特征提取的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Places365实践

1.材料准备+环境配置

github下载地址:https://github.com/CSAILVision/places365

可以通过运行下面代码来了解代码如何使用。(在这之前,要先安装torch,具体步骤见另一篇博客)

 python run_placesCNN_basic.py

 

其中,有两个代码段是会在找不到相关文件的时候使用wget下载的,由于windows无法使用wget,所以我们需要提前准备好这两个文件:预训练过的ResNet18模型和进行测试的图片12.jpg

ResNet18模型可以在github中下载:

12.jpg可以在http://places.cs

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值