SPFA解决单源最短路

Shortest Path Faster Algorithm(SPFA)算法

其实是BFS宽度优先搜索,利用队列进行优化
可以解决带有负边权的单源最短路问题,另外可以用来判断负环

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>

using namespace std;

#define MAX 0x3f3f3f3f
#define N 100005
//定义边
typedef struct edge {
    int re;//弧尾
    int w;//边权
};
//n为点个数,m为边的个数,dst保存最短距离
int n, m, dst[N];
vector<edge> a[N];//邻接表
bool flag[N];//标记数组

void spfa()
{
    memset(dst, 0x3f, sizeof dst);//dst初始化为MAX
    dst[1] = 0;//1为起始结点
    queue<int> q;
    q.push(1);//将当前结点入队
    flag[1] = true;//标记,表示队列中已经有该结点
    while (!q.empty())
    {
        int j = q.front();
        q.pop();//队头出队
        flag[j] = false;
        for (int i = 0; i < a[j].size(); i++)
        {
            //遍历与j相连的所有边
            if (dst[a[j][i].re] > dst[j] + a[j][i].w)
            {
                //如果能使到达相连结点的最短距离变短,则更新距离
                dst[a[j][i].re] = dst[j] + a[j][i].w;
                if (!flag[a[j][i].re])
                {
                    //如果相连的结点不在队列中
                    q.push(a[j][i].re);
                    //将该相连且使得最短距离发生变化的结点入队
                    flag[a[j][i].re] = true;
                }
            }
        }
    }
}

int main()
{

    int num1, num2, num3;
    scanf("%d %d", &n, &m);

    for (int i = 0; i < m; i++)
    {
        scanf("%d %d %d", &num1, &num2, &num3);
        edge e;
        e.re = num2;
        e.w = num3;
        a[num1].push_back(e);//有向图
    }
    
    spfa();//函数调用
    
    if (dst[n] == MAX) printf("impossible");//输出不可达
    else printf("%d", dst[n]);//输出从1到n的最短距离

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值