Spark的DAG的生成过程详解

1. DAG详解

  • DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就形成了DAG,根据RDD之间依赖关系的不同将DAG划分成不同的Stage(调度阶段)。
  • 对于窄依赖,partition的转换处理在一个Stage中完成计算。
  • 对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据

在这里插入图片描述
DAG的边界:

  • 开始:通过SparkContext创建的RDD
  • 触发Action,一旦触发Action就形成了一个完整的DAG

小结:

  • 一个Spark的Application应用中一个或者多个DAG(也就是一个Job),取决于触发了多少次Action
  • 一个DAG中会有不同的阶段/stage,划分阶段/stage的依据就是宽依赖
  • 一个阶段/stage中可以有多个Task,一个分区对应一个Task

2.DAG划分Stage

  • Spark的计算逻辑关系
  1. 一个Application有一个或者多个job,一个job对应一个DAG
  2. 一个job分为不同的stage
  3. 一个stage下面有一个或者多个TaskSet
  4. 一个TaskSet有很多T
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值