洛谷B4040 [GESP202409 四级] 黑白方块

原理

  1. 模式匹配
    在给定的 n×m 矩阵中,查找是否存在与预定义的 4×4 模式矩阵 g 完全相同的子矩阵。
  2. 暴力枚举
    遍历矩阵中所有可能的 4×4 子矩阵的左上角起始点,逐个与模式矩阵比较。
  3. 边界处理
    若矩阵的行或列不足 4,直接判定不存在目标子矩阵。

步骤

  1. 输入处理
    读取测试用例数 t,每个用例读取矩阵的行 n、列 m 和矩阵数据。
  2. 矩阵遍历
    对每个可能的 4×4 子矩阵的左上角坐标 (i, j),检查其是否与模式 g 匹配。
  3. 模式检查
    对每个子矩阵,逐元素与 g 比较,完全一致则返回存在。
  4. 结果输出
    根据检查结果输出 Yes 或 No

图示法表示步骤

 
示例输入矩阵(5x5):
0 0 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0

模式矩阵 g:
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

遍历可能的子矩阵:
- 左上角 (1,1) → 匹配失败(左上角为0,但g的左上角为0,继续检查其他元素)
- 左上角 (2,2) → 匹配成功,返回 Yes

代码程序及关键行注释

#include <iostream>
#include <vector>
using namespace std;

// 预定义的4x4模式矩阵
const char g[4][4] = {
    '0', '0', '0', '0',
    '0', '1', '1', '0',
    '0', '1', '1', '0',
    '0', '0', '0', '0'
};

// 检查子矩阵是否与g匹配
bool check(vector<vector<char>>& matrix, int x, int y) {
    for (int i = 0; i < 4; i++) {
        for (int j = 0; j < 4; j++) {
            if (matrix[x + i][y + j] != g[i][j]) // 逐元素比较
                return false;
        }
    }
    return true;
}

// 遍历所有可能的4x4子矩阵
bool matrixExist(vector<vector<char>>& matrix, int n, int m) {
    if (n < 4 || m < 4) return false; // 边界条件
    for (int i = 1; i <= n - 3; i++) { // 遍历起始行
        for (int j = 1; j <= m - 3; j++) { // 遍历起始列
            if (check(matrix, i, j)) {
                return true; // 找到匹配的子矩阵
            }
        }
    }
    return false;
}

int main() {
    int t;
    cin >> t;
    while (t--) {
        int n, m;
        cin >> n >> m;
        vector<vector<char>> matrix(n + 1, vector<char>(m + 1)); // 从1开始索引
        for (int j = 1; j <= n; j++) {
            for (int k = 1; k <= m; k++) {
                cin >> matrix[j][k]; // 输入矩阵数据
            }
        }
        if (matrixExist(matrix, n, m)) {
            cout << "Yes" << endl;
        } else {
            cout << "No" << endl;
        }
    }
    return 0;
}

时间复杂度

  1. 单测试用例
    • 遍历子矩阵:(n-3) × (m-3) 次。
    • 每次检查:4×4 = 16 次比较。
    • 总时间复杂度:O(nm)
  2. 整体复杂度
    若有 t 个测试用例,总复杂度为 O(t × n × m)

总结

  1. 核心思想
    暴力枚举所有可能的 4×4 子矩阵,直接与目标模式比较。
  2. 适用场景
    适用于矩阵规模较小的情况(如 n, m ≤ 100),时间复杂度可接受。
  3. 优化空间
    若矩阵规模较大,可考虑哈希或更高效的模式匹配算法(如二维KMP),但实现复杂度较高。
  4. 代码特点
    代码简洁直观,但矩阵索引从 1 开始需特别注意边界处理。
<think>嗯,用户需要B4069题目的题解或解题思路。首先,我要确认这个题目的具体内容。虽然用户提到了“字符排序”,但根据提供的引用,现有的参考资料并没有直接提到B4069这个题号。不过,用户提供的引用中有关于GESP四级题目的其他例子,比如B3851和B4004,这些可能具有类似的结构或考点。 接下来,我需要推测可能的解题方向。GESP四级的题目通常涉及数组操作、字符串处理、进制转换等,比如引用[2]中的图像压缩题涉及二维数组和进制转换。字符排序可能涉及字符串的处理和特定排序规则,比如按ASCII码、出现频率或其他条件排序。 可能的解题步骤包括: 1. **输入处理**:读取字符串并解析可能的参数,比如排序方式(升序、降序)或特定规则。 2. **排序规则分析**:确定题目要求的排序方式,例如先按字符出现次数排序,再按ASCII码排序。 3. **算法选择**:使用哈希表统计字符频率,然后根据规则排序。 4. **实现细节**:注意边界条件,如空字符串或特殊字符的处理。 考虑到用户可能需要具体的代码示例,我需要构造一个符合题意的Python解决方案。例如,统计字符出现次数并按频率降序、ASCII升序排列,然后将结果拼接成字符串。 同时,用户可能遇到的问题包括如何处理多个相同频率的字符以及如何高效地进行排序。因此,在解题思路中需要详细说明这些步骤,并确保代码清晰易读。 最后,根据用户提供的引用,可能需要参考类似题目的解法,比如B3851中的二维数组处理或B4004中的倍数查找方法,但这些可能需要调整以适应字符排序的具体要求。 综上所述,需要构建一个基于频率和ASCII码的排序算法,并给出相应的代码实现和步骤解释,同时指出可能的优化方法和应用场景。</think>### B4069 [GESP202412 四级] 字符排序 题解思路 #### 题目分析 根据题目编号推测,本题可能要求对字符串中的字符按特定规则排序。参考GESP四级其他题目(如B3851的图像压缩[^2]),此类问题常涉及**字符串处理+排序算法**的组合应用。可能的规则包括: 1. 按字符ASCII码升序/降序排列 2. 按字符出现频率排序(高频优先) 3. 混合规则(如频率优先,ASCII码次优先) #### 解题步骤 1. **输入处理** 读取字符串及可能的排序参数(如`-d`表示降序,`-a`表示升序等) 2. **统计字符频率** 使用哈希表统计每个字符的出现次数: ```python from collections import defaultdict count = defaultdict(int) for c in s: count[c] += 1 ``` 3. **复合排序规则** 假设题目要求: - 主排序:按出现次数**降序**排列 - 次排序:相同次数的字符按ASCII码**升序**排列 ```python sorted_chars = sorted(count.items(), key=lambda x: (-x[1], ord(x[0]))) ``` 4. **结果构造** 将排序后的字符按频次拼接: ```python result = ''.join([c * cnt for c, cnt in sorted_chars]) ``` #### 完整代码示例 ```python def sort_string(s): from collections import defaultdict count = defaultdict(int) for c in s: count[c] += 1 # 按频率降序、ASCII升序排序 sorted_items = sorted(count.items(), key=lambda x: (-x[1], ord(x[0]))) # 生成结果字符串 return ''.join([char * cnt for char, cnt in sorted_items]) # 测试用例 print(sort_string("tree")) # 输出"eetr"或"eert"(取决于题目具体要求) ``` #### 复杂度分析 - 时间复杂度:$O(n + k \log k)$,其中$n$为字符串长度,$k$为不同字符数量 - 空间复杂度:$O(k)$ #### 注意事项 1. 需要确认题目是否区分大小写(如`A`与`a`是否算相同字符) 2. 注意空字符串的特殊处理 3. 输出格式要求(是否需要保持原字符串长度)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值