非遗双效模型spss数据分析操作步骤(保姆级!)

以下是在SPSS中完成双效模型计算的完整操作步骤​(含图文详解):


一、数据录入与变量设置

数据(打分):

编号文化基因传承社群认同度数字化传播市场转化率产业链增值技术投入比非遗类型
1857872908288传统工艺
2928568767579表演艺术
3787281889085传统医药
4808075827880民俗活动
5887683958892传统工艺
  1. 新建SPSS文件

    • 打开SPSS → 点击左下角「变量视图」
  2. 定义变量属性

    列名(英文)中文标签类型测量尺度说明
    ID编号数值度量非遗项目唯一标识
    WHJC文化基因传承数值度量0-100分
    SQRT社群认同度数值度量0-100分
    SZHCB数字化传播数值度量0-100分
    SCZH市场转化率数值度量0-100分
    CLZZ产业链增值数值度量0-100分
    JSTR技术投入比数值度量0-100分
    Type非遗类型字符串名义文本分类(如传统工艺)

  3. 输入数据

    • 切换至「数据视图」,按提供的表格逐行输入数据

二、计算双效指数(DEI)​

步骤1:设定权重系数

根据AHP法假设已确定权重:

  • 文化效益(总权重60%)​
    文化基因传承(40%) + 社群认同度(30%) + 数字化传播(30%)
  • 经济效益(总权重40%)​
    市场转化率(50%) + 产业链增值(30%) + 技术投入比(20%)
步骤2:计算文化效益得分
  1. 点击菜单栏「转换」→「计算变量」
  2. 设置目标变量:WHXY(文化效益)
  3. 输入公式:
    (WHJC*0.4 + SQRT*0.3 + SZHCB*0.3) * 0.6  
步骤3:计算经济效益得分
  1. 再次点击「转换」→「计算变量」
  2. 设置目标变量:JJXY(经济效益)
  3. 输入公式:
    (SCZH*0.5 + CLZZ*0.3 + JSTR*0.2) * 0.4  

步骤4:计算总DEI指数
  1. 继续点击「转换」→「计算变量」
  2. 设置目标变量:DEI
  3. 输入公式:
    WHXY + JJXY  


三、结果验证与输出

  1. 查看计算结果

    • 返回「数据视图」,新增的WHXYJJXYDEI列显示各项目得分
    • 描述性统计
      • 点击「分析」→「描述统计」→「描述」
      • WHXYJJXYDEI拖入变量框 → 勾选“最小值/最大值/均值/标准差”
      •             

  2. 分组对比(按非遗类型)​

    • 点击「数据」→「拆分文件」→ 选择“按组组织输出” → 分组变量选Type
    • 重新运行描述统计,观察不同类型双效指数差异
       

四、可视化分析(可选)​

  1. 散点图:文化效益 vs 经济效益

    • 点击「图形」→「图表构建器」
    • 选择散点图 → 拖放WHXY到X轴,JJXY到Y轴,Type到颜色设置
  2. 雷达图:各指标对比

    • 安装Python插件(需SPSS 26+版本)→ 使用以下代码生成:
      BEGIN PROGRAM PYTHON.
      import matplotlib.pyplot as plt
      import numpy as np
      vars = ['WHJC','SQRT','SZHCB','SCZH','CLZZ','JSTR']
      data = spssaux.GetDataFromSPSS()
      angles = np.linspace(0, 2*np.pi, len(vars), endpoint=False)
      fig = plt.figure(figsize=(6,6))
      ax = fig.add_subplot(111, polar=True)
      for i in range(len(data)):
          values = data.iloc[i][vars].tolist()
          values += values[:1]
          ax.plot(angles, values, label=data.iloc[i]['Type'])
      ax.set_xticks(angles)
      ax.set_xticklabels(vars)
      plt.show()
      END PROGRAM.

五、注意事项

  1. 权重调整:若需修改权重,重新执行步骤二并覆盖原变量
  2. 数据标准化:若原始数据未统一量纲,需先进行Z-score标准化
  3. 缺失值处理:在「变量视图」中设置缺失值编码(如99→系统缺失)

如需进一步分析(如BP神经网络优化权重),可提供具体需求扩展步骤。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值