程序员的数学之线性代数(1)

程序员的数学之线性代数

综述

  线性代数的学习,比起计算方法,更重要的是掌握它的本质含义,这一点是非常重要的。矩阵不仅仅是数字排列而成的表而已,如果我们尝试从空间的角度去理解矩阵,我们会发现,它的“意蕴”是非常丰富有趣的。

  其实,本质上来说,矩阵就是映射,在空间上的一种映射。

   举个例子来阐述这个观点:假设有一个m * n的矩阵A, 在n维空间中的点x(n * 1 的列向量),则经过矩阵A的映射,就像n维空间中的点x映射到了m维空间中去了(Ax, m维的列向量)。

   接下来,我将从空间的角度,去阐述一些基本概念:对角矩阵、行列式、特征值、特征向量、对角化、秩与可逆化。

   首先,不得不说一下单位矩阵,也就是标准空间。(本文只列举二维空间的变换, 也就是只用二阶矩阵来阐述一些概念, 这些概念同样适用于n维的向量空间)
   单位矩阵E,沿着矩阵的对角线的数为1, 其它的数全为0。(例如: { 1 0 0 1 } \left\{\begin{matrix}1&0\\0&1\end{matrix}\right\} {1001}

   在这里,我将直接阐述一些概念的“空间意义”。

一、 对角矩阵:

   设矩阵A = { 1.5 0 0 0.5 } \left\{\begin{matrix}1.5&0\\0&0.5\end{matrix}\right\} {1.5000.5}, 那么,在矩阵A的作用下, 空间会产生怎样的变化呢?

   该空间将发生如下变化:水平方向上将会伸缩为原来的1.5倍,垂直方向上将伸缩为原来的0.5倍。则面积扩大为原来(1 * 1)的1.5 * 0.5倍,即行列式det***A*** = 0.75。

   如果矩阵变成了A = { 0 0 0 0.5 } \left\{\begin{matrix}0&0\\0&0.5\end{matrix}\right\} {0000.5}, 又会带来怎样的变化呢?

   水平方向上变为原来的0倍?垂直方向上还是变为原来的0.5倍?对, 没错,通过这样的变换之后,水平方向被压缩后与垂直方向重合,也就是说,空间的维度由原来的2维降到了1维空间。

   那,如果矩阵变成了A = { 1.5 0 0 − 0.5 } \left\{\begin{matrix}1.5&0\\0&-0.5\end{matrix}\right\} {1.5000.5}呢?

   这个时候,垂直方向变为原来的-0.5倍,即上下颠倒后缩短为原来的0.5,而detA<0。

   通过这样的一个简单例子,会给我们带来一个怎么样的思考呢?

   首先,对比对角矩阵与单位矩阵,没错,单位矩阵,也是对角矩阵。然后呢?有没有发现,这种伸缩率是相比于1的?也就是单位矩阵,单位空间。再然后呢?会发现,这种变换,它们仅仅只是在每一个维度上进行的,并没有影响另外一个维度。其实从这里我们便可以得到启发:即使看似是n维的问题,实际上也只是n个一维问题而已。我们只需要将这n个一维问题“合成”一下即可。

二、特征值、特征向量、对角化:

   从几何意义上讲,特征向量乘上矩阵A之后,矩阵A所表示的向量空间除了长度有伸缩变化之外,方向不发生改变。这里的长度变化倍率,便是特征值

   假设一个矩阵A= { 1 − 0.3 − 0.7 0.6 } \left\{\begin{matrix}1&-0.3\\-0.7&0.6\end{matrix}\right\} {10.70.30.6},那么在A的作用下,空间将会发生倾斜变形,不过,这并非扭曲,直线仍然是直线,平行关系仍然保持着平行关系。这是一种怎样的变化呢?第一列 { 1 − 0.7 } \left\{\begin{matrix}1\\-0.7\end{matrix}\right\} {10.7},为标准向量空间的一个基向量 { 1 0 } \left\{\begin{matrix}1\\0\end{matrix}\right\} {10}经过某种映射关系所成的像(变换之后的目标点,这里的目标点的参考系是原来的向量空间)。同样道理,矩阵A的第二列,是标准向量空间的另一个基向量 { 0 1 } \left\{\begin{matrix}0\\1\end{matrix}\right\} {01}经过某种映射关系所成的像。

   对角化:什么是对角化呢?同样以该矩阵A为例来解释。对于一个标准向量空间,通过矩阵A的作用后,变成了另外一个向量空间,这一向量空间,相对于标准向量空间是倾斜的,。但是,如果我们尝试把变换之后的向量空间作为标准向量空间的话,我们便可以把矩阵A对角化。那么,在这样一个新的“标准向量空间”下,原来的标准向量空间便是倾斜的。所以,对角化的过程,就是将某一向量空间“标准化”的过程。(我觉得是可以这样理解的。)

三、 秩与可逆性:

   秩,就是像的维度。其实,秩这个概念也可以结合着特征向量的线性相关性,线性无关性来理解。而线性相关性和线性无关性又和向量空间的维度是有关系的。这里暂时先不具体展开。
   压缩扁平化,如果经过某一矩阵的映射之后,出现了降维的情况,也就是像的维数比原来降低,那么这时候的矩阵被称为奇异矩阵。也就是说,我们不能再通过某种变换,将该被压缩的向量空间复原。相反的,如果没有发生扁平化,那么我们便可以将该向量空间再次通过某种映射恢复回来,则称该矩阵为非奇异矩阵(可逆矩阵)。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值