机器学习和深度学习笔记
文章平均质量分 86
本人机器学习和深度学习过程中,对于各种不了解的知识点的笔记注释
WXLJZ_LHD
这个作者很懒,什么都没留下…
展开
-
机器学习Day2——Numpy的使用
NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy提供了一个n维数组的数据类型。(n-n个,d-dimension,array-数组)数组属性反映了数组本身固有的信息。属性名字属性解释数组维度的元组(几行,几列)数组维度。原创 2023-11-01 19:09:48 · 95 阅读 · 0 评论 -
机器学习Day2——Pandas的使用
专门用于数据挖掘的开源python库以Numpy为基础,借力Numpy模块在计算方面性能高的优势基于matplotlib,能够简便的画图具有独特的数据结构func:自定义函数axis=0:默认是列,axis = 1为行进行运算定义一个对列,最大值-最小值的函数。原创 2023-11-01 19:09:38 · 90 阅读 · 0 评论 -
机器学习Day4——逻辑回归与二分类
本栏目为本人自学B站各位好心的博主所录视频过程中记录下来的笔记,出处基本来自于B站视频博主以及csdn中各位大佬的解释,我只起到了转载的作用。因来源过于复杂,因此无法标注来源。原创 2023-10-13 09:57:44 · 84 阅读 · 0 评论 -
机器学习Day4——K-means算法
没有目标值——就是无监督学习一家广告平台需要根据相似的人口学特征和购买习惯将美国人口分成不同的小组,以便广告客户可以通过有关联的广告接触到他们的目标客户。Airbnb需要将自己的房屋清单分组成不同的社区,以便用户能更轻松地查阅这些清单。一个数据科学团队需要降低一个大型数据集的维度的数量,以便简化建模和降低文件大小。特点分析:采用迭代式算法,直观易懂并且非常实用缺点:容易收敛到局部最优解(可多次聚类解决)注意:聚类一般做在分类之前。原创 2023-10-13 09:57:34 · 78 阅读 · 0 评论 -
机器学习Day4——欠拟合与过拟合
本栏目为本人自学B站各位好心的博主所录视频过程中记录下来的笔记,出处基本来自于B站视频博主以及csdn中各位大佬的解释,我只起到了转载的作用。因来源过于复杂,因此无法标注来源。原创 2023-10-13 09:57:13 · 48 阅读 · 0 评论 -
机器学习Day4——线性回归的改进-岭回归
本栏目为本人自学B站各位好心的博主所录视频过程中记录下来的笔记,出处基本来自于B站视频博主以及csdn中各位大佬的解释,我只起到了转载的作用。因来源过于复杂,因此无法标注来源。原创 2023-10-13 09:56:32 · 83 阅读 · 0 评论 -
机器学习Day5——Pytorch深度学习框架学习
本栏目为本人自学B站各位好心的博主所录视频过程中记录下来的笔记,出处基本来自于B站视频博主以及csdn中各位大佬的解释,我只起到了转载的作用。因来源过于复杂,因此无法标注来源。原创 2023-09-12 08:42:30 · 58 阅读 · 0 评论 -
机器学习Day4——线性回归
线性回归(Linear regression)原创 2023-08-01 11:07:21 · 118 阅读 · 1 评论 -
机器学习Day3——分类算法
定义如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN核心思想通过你的“邻居”来推断出你的类别K-近邻算法(KNN)原理若k = 1,容易受到异常点的影响如何确定谁是邻居?通过距离公式计算距离:欧氏距离曼哈顿距离 绝对值距离明可夫斯基距离优点:简单,易于理解,易于实现,无需训练缺点:必须指定K值,K值选择不当则分类精度不能保证懒惰算法,对测试样本分类时的计算量大,内存开销大。原创 2023-07-27 16:22:45 · 115 阅读 · 1 评论 -
机器学习Day2——Matplotlib的使用
能够将数据进行可视化,是得数据有了直观的呈现。也就是数据可视化图表。原创 2023-07-25 21:01:15 · 114 阅读 · 0 评论 -
机器学习Day1——什么是机器学习?机器学习的开发流程
百度百科的解释呢,是说:机器学习(Machine Learning)是一种让计算机通过数据自动学习的技术。它可以让计算机从数据中自动学习规律和模式,并根据这些规律和模式进行预测和决策。而我自己的理解呢,是这样的:机器学习就是在海量数据中抽象出一个较为普适的规律,然后让模型去适应这样的规律,不断优化。最终用新的数据去测试模型,得到预测结果。(我刚接触机器学习,因此很可能不太对,但我是这样浅显的理解的)原创 2023-07-19 17:36:12 · 180 阅读 · 1 评论 -
机器学习Day0——sklearn数据集
加载获取流行数据集获取小规模数据集,数据包含在datasets里获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是~l/scikit_learn_datal。原创 2023-07-26 16:00:02 · 93 阅读 · 1 评论