机器学习Day4——线性回归

本栏目为本人自学B站各位好心的博主所录视频过程中记录下来的笔记,出处基本来自于B站视频博主以及csdn中各位大佬的解释,我只起到了转载的作用。因来源过于复杂,因此无法标注来源。

1.线性回归

1.1 线性回归的原理

1.1.1 线性回归应用场景

回归问题:目标值为连续型数据的问题

  • 房价预测
  • 销售额度预测
  • 金融:贷款额度预测、利用线性回归以及系数分析因子

1.1.2 什么是线性回归

  1. 定义与公式
    线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。
    • 特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归

通用公式:
在这里插入图片描述

那么如何理解呢?观察以下几个例子:

  • 期末成绩 = 0.7×考试成绩+0.3×平时成绩
  • 房子价格 = 0.02×中心区域的距离+0.04×城市一氧化氮浓度+(-0.12×自住房平均房价)+0.254×城镇犯罪率

上面两个例子,我们看到特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型

  1. 线性回归的特征与目标的关系分析
    线性回归当中线性模型两种,一种是线性关系,另一种是非线性关系。在这里我们只能画一个平面更好去理解,所以都用单个特征或两个特征举例子。
  • 线性关系
    在这里插入图片描述
    在这里插入图片描述

注释:单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系

  • 非线性关系
    在这里插入图片描述

注释:为什么会这样的关系呢?原因是什么?
如果是非线性关系,那么回归方程可以理解为:w1x1 + w2x2 ^ 2 + w3x3 ^ 2

线性关系 ≠ 线性模型,线性关系一定是线性模型,但线性模型不一定是线性关系

1.2 线性回归的损失和优化原理

线性回归的目标是要求出模型的参数,正确的模型参数能够使得预测更为的准确。

假设:

真实关系:真实房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率
随意假定:预测房子价格 = 0.25×中心区域的距离 + 0.14×城市一氧化氮浓度 + 0.42×自住房平均房价 + 0.34×城镇犯罪率

显然,真实值与预测值存在着误差,要做的就是将误差缩小,令其不断地向真实值靠近。那么如何衡量这个误差呢?

1.2.1 损失函数

总损失定义为:

在这里插入图片描述

  • y_i为第i个训练样本的真实值
  • h(x_i)为第i个训练样本特征值组合预测函数
  • 又称最小二乘法

1.2.2 优化算法

如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)

线性回归经常使用的两种优化算法:

  • 正规方程
    在这里插入图片描述

理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果
缺点:当特征过多过复杂时,求解速度太慢并且得不到结果

  • 梯度下降(Grandient Descent)
    在这里插入图片描述

理解:α为学习速率,需要手动指定(超参数),α旁边的整体表示方向沿着这个函数下降的方向找,最后就能找到山谷的最低点,然后更新W值
使用:面对训练数据规模十分庞大的任务,能够找到较好的结果

1.3 线性回归API

  • sklearn.linear_model.LinearRegression(fit_intercept=True)
    • 通过正规方程优化
    • fit_intercept:是否计算偏置
    • LinearRegression.coef_:回归系数
    • LinearRegression.intercept_:偏置
  • sklearn.linear_model.SGDRegressor(loss=“squared_loss”, fit_intercept=True,learning_rate =‘invscaling’, eta0=o.01)
    • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。
    • loss:损失类型
      • " loss=“squared_loss”:普通最小二乘法
    • fit_intercept:是否计算偏置
    • learning_rate : string, optional
      • 学习率填充
      • ‘constant’: eta = eta0
      • ‘optimal’: eta = 1.o /(alpha * (t + to))[default]
      • ‘invscaling’: eta = eta0 / pow(t, power_t)
        • power_t=o.25:存在父类当中
      • 对于一个常数值的学习率来说,可以使用learning_rate='constant”,并使用etaO来指定学习率。
    • SGDRegressor.coef_:回归系数
    • SGDRegressor.intercept_:偏置

sklearn提供给两种实现的API,可以根据选择使用

1.4 回归性能评估

均方误差(Mean Squared Error) MSE评价机制:
在这里插入图片描述

注:Yi为预测值,Y为真实值

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • 均方误差回归损失
    • y_true:真实值
    • y_pred:预测值
    • return:浮点数结果

1.5 波士顿房价预测

  1. 波士顿数据集
特征值解释类型
CRIM该镇的人均犯罪率连续值
ZN占地面积超过25,000平方吹的住宅用地比例连续值
INDUS非零售商业用地比例连续值
CHAS是否邻近Charles River离散值,1=邻近;0=不邻近
NOx—氧化氮浓度连续值
RM每栋房屋的平均客房数连续值
AGE1940年之前建成的自用单位比例连续值
DIS到波士顿5个就业中心的加权距离连续值
RAD到径向公路的可达性指数连续值
TAX全值财产税率连续值
PTRATIO学生与教师的比例连续值
B1000(BK - 0.63)^2,其中BK为黑人占比连续值
LSTAT低收入人群占比连续值
MEDV同类房屋价格的中位数连续值
  1. 流程
    1. 获取数据集
    2. 划分数据集
    3. 特征工程:
      • 无量纲化 - 标准化
    4. 预估器流程
      • fit() --> 模型
      • coef_ intercept_
    5. 模型评估
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor
from sklearn.metrics import mean_squared_error

def Normal_equation():
    """
    正规方程的优化方法对波士顿房价进行预测
    :return: None
    """
    # 1)获取数据
    boston = load_boston()

    # 2)划分数据集
    x_train,x_test,y_train,y_test = train_test_split(boston.data,boston.target,random_state=5)

    # 3)标准化
    transfer =  StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)预估器
    estimator = LinearRegression()
    estimator.fit(x_train,y_train)

    # 5)得出模型
    print("正规方程权重系数为:\n",estimator.coef_)
    print("正规方程偏置为:\n",estimator.intercept_)

    # 6)模型评估
    prediction = estimator.predict(x_test)
    print("预测房价为:\n",prediction)
    error = mean_squared_error(y_test,prediction)
    print("正规方程的均方误差为:\n",error)

def Gradient_descent():
    """
    梯度下降的优化方法对波士顿房价进行预测
    :return: None
    """
    # 1)获取数据
    boston = load_boston()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=5)

    # 3)标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)预估器
    estimator = SGDRegressor()
    estimator.fit(x_train, y_train)

    # 5)得出模型
    print("梯度下降权重系数为:\n", estimator.coef_)
    print("梯度下降偏置为:\n", estimator.intercept_)

    # 6)模型评估
    prediction = estimator.predict(x_test)
    print("预测房价为:\n", prediction)
    error = mean_squared_error(y_test, prediction)
    print("梯度下降的均方误差为:\n", error)

if __name__ == '__main__':
    # 正规方程
    Normal_equation()
    # 梯度下降
    Gradient_descent()

1.6 正规方程和梯度下降对比

  • 文字对比
梯度下降正规方程
需要选择学习率不需要
需要迭代求解—次运算得出
特征数量较大可以使用需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      - LinearRegression(不能解决拟合问题)
      - 岭回归
    • 大规模数据:SGDRegressor

拓展:关于优化方法GD、SGD、SAG

  1. GD
    梯度下降(Gradient Descent),原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。
  2. SGD
    随机梯度下降(Stochastic gradient descent)是一个优化方法。它在一次迭代时只考虑一个训练样本。
  • SGD的优点是∶
    • 高效
    • 容易实现
  • SGD的缺点是∶
    • SGD需要许多超参数︰比如正则项参数、迭代数。
    • SGD对于特征标准化是敏感的。
  1. SAG
    随机平均梯度法(Stochasitc Average Gradient),由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法

Scikit-learn:岭回归、逻辑回归等当中都会有SAG优化

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值