ER论文阅读-LMR-CBT: Learning Modality-fused Representations with CB-Transformer for Multimodal Emotion R

LMR-CBT: Learning Modality-fused Representations with CB-Transformer for Multimodal Emotion Recognition from Unaligned Multimodal Sequences

基本介绍:FCS, 2024, CCF-B

原文链接:https://arxiv.org/pdf/2112.01697

Abstract

        在多模态情感识别中,学习融合模态的表示以及处理未对齐的多模态序列是具有重要意义且充满挑战的任务。现有方法使用方向性成对注意力机制或消息枢纽来融合语言、视觉和音频模态。然而,这些方法在融合特征时引入了信息冗余,并且没有充分考虑模态之间的互补性,导致效率低下。本文提出了一种高效的神经网络,使用CB-Transformer(LMR-CBT)从未对齐的多模态序列中学习融合模态的表示,用于多模态情感识别。具体而言,我们首先对三种模态分别进行特征提取,以获得序列的局部结构。然后,我们设计了一种新的带有跨模态块(CB-Transformer)的Transf

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值