电池一阶等效电路模型(Simulink&MATLAB脚本)

电池一阶等效电路模型

请添加图片描述

1. 模型结构

该电路模型包含以下几个主要部分:

  • R 0 R_0 R0:电池的内阻,主要代表了电池的总内阻。
  • R 1 R_1 R1 C 1 C_1 C1:构成了RC串联电路,描述电池的动力学特性。电容 C 1 C_1 C1模拟电池内部储能部分,而电阻 R 1 R_1 R1代表了电池在充放电过程中产生的能量损失。
  • U 1 U_1 U1:电池电压的内部部分,它与电池总电压 U U U之间有关系。
  • 电池的输出电压 V m d l V_mdl Vmdl:这是电池模型计算出的电池电压。

2. 电路方程

模型的电流、电压关系可以通过一下两个方程描述:

  • 电流方程
    C 1 d U 1 d t + U 1 R 1 = I C_1 \frac{dU_1}{dt} + \frac{U_1}{R_1} = I C1dtdU1+R1U1=I
    这个方程表示电池内部的电流和电压变化关系。电容 C 1 C_1 C1存储电荷,而电阻 R 1 R_1 R1则决定了电压降和电流之间的关系。
  • 电池输出电压方程:
    V m d l = U ( S O C ) − U 1 − I R 0 V_{mdl} = U(SOC) - U_1 - IR_0 Vmdl=U(SOC)U1IR0
    该方程表示电池的输出电压 V m d l V_{mdl} Vmdl,其中 U ( S O C ) U(SOC) U(SOC)是电池的开路电压,它依赖于电池的剩余电量(SOC),而 U 1 U_1 U1是电池内部电压, R 0 R_0 R0是电池的内阻。
    S O C = S O C 0 − ∫ η Q ⋅ 3600 ⋅ I d t SOC = SOC_0 - \int \frac{\eta}{Q \cdot 3600} \cdot I dt SOC=SOC0Q3600ηIdt
    该方程表示电池的充电状态(SOC)。其中 S O C 0 SOC_0 SOC0是初始的充电状态, η \eta η是充电效率, Q Q Q是电池的容量。

3. 应用场景

电池的一阶等效电路模型广泛应用于:

  • 电池管理系统 (BMS):用于估算电池的电压、电流和剩余电量,帮助管理电池的充放电过程,延长电池使用寿命。
  • 电池模拟与优化:在电动汽车、可再生能源存储等应用中,用于模拟电池性能,优化充电策略和电池组设计。
  • 电池健康监测:通过实时监测电池状态,评估电池的健康状况,并采取相应的维护措施。

4. 一阶RC等效电路模型(Simulink版)一阶RC等效电路模型(Simulink版)

其中fcn中设置的RMSE,来求解该模型的误差是多少

function y = fcn(u)
y = sqrt(mean(u.^2))

该模型中涉及到了SOC的计算,所采用的方法是根据电流进行安时积分。

5. 一阶RC等效电路模型(MATLAB脚本版)

clear all
clc

% 加载电池参数和数据
load battParams.mat
load batteryData.mat

% 参数
R0 = 0.0037; % 内部电阻
R1 = 0.0052; % 等效串联电阻
C1 = 1042; % 等效电容

% 读取数据
time = data(:, 1); % 时间
current = data(:, 2); % 电流
voltage = data(:, 3); % 电压
t_end = time(end) - time(1); % 总时间

% 计算SOC
SOC = initialSoC*100 - cumtrapz(time,current)/3600/capacity*100;

% 插值获取开路电压
U = interp1(s0,e0,SOC);

% 初始条件
v0 = zeros(3300,1); % 初始电压
% 求解微分方程
[t, v] = ode45(@(t, v) myODE(t, v, time, current, C1, R1), [0 3300], 0);
%sample time
time_sample = 0:1:time(end);
voltage_sample = interp1(t,v,time_sample,'linear')

% 计算电池单元的电压
V_cell = U - current * R0 - voltage_sample';

%计算误差
Rmse = sqrt(mean((V_cell(1:end-1)-voltage(1:end-1)).^2))
%因为插值求得电压,voltage_sample最后一位是NaN,因此求rmse时舍掉了最后一位。

% 绘制电压随时间变化的图像
figure;
plot(time,voltage,time, V_cell);
xlabel('Time (s)');
ylabel('Voltage (V)');
title('Computed Voltage VS Actual Voltage');

function dvdt = myODE(t, v, time, current, C1, R1)
i = interp1(time,current,t)
dvdt = (1/C1)*(i - v/R1); % 描述微分方程
end

6. 总结

这个一阶等效电路模型通过电阻、电容和电压之间的关系描述了电池的动态行为,并通过SOC方程帮助估算电池的剩余电量。它的简洁性使得它在实际应用中具有广泛的用途,尤其是在电池管理和优化领域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

栗子要养老

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值