提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
提示:这里可以添加本文要记录的大概内容:
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。
提示:以下是本篇文章正文内容,下面案例可供参考
一、算法题目
1、冒泡排序
int size = arr.length;
if (size < 2) {
return;
}
for (int i = size - 1; i > 0; i--) {
int maxValue = 0;
for (int j = 0; j < i; j++) {
maxValue = arr[j] > arr[j + 1] ? j + 1 : j;
swap(arr, maxValue, j);
}
}
2、插入排序
int size = arr.length;
if (size < 2) {
return;
}
for (int i = 1; i < size; i++) {
int newNum = i;
while (newNum - 1 >= 0 && arr[newNum] < arr[newNum - 1]) {
swap(arr, newNum, newNum - 1);
newNum--;
}
}
3、选择排序
int size = arr.length;
if (size < 2) {
return;
}
for (int i = 0; i < size; i++) {
int minIndex = i;
for (int j = i + 1; j < size; j++) {
minIndex = arr[minIndex] > arr[j] ? j : minIndex;
}
swap(arr, i, minIndex);
}
4、对数器
public static int[] randomSizeRandomValue(int sizeNum , int valueNum){
int size = (int)(Math.random() * sizeNum);
System.out.println(size);
int [] arr = new int[size];
for (int i = 0; i < size; i++) {
int value = (int)(Math.random() * valueNum);
arr[i] = value;
}
return arr;
}
5、 给了一个黑盒的方法A
方法A,【1,5】 范围内,获取的数字,概率都是相同的
在不修改方法A的情况下,请写出一个方法B。 在【1,7】范围内,获取的数字,概率都是相同的
public static int a() {
return (int)(Math.random() * 5) + 1 ;
}
public static int b() {
int num = 0;
do {
num = a();
}while ( num == 3);
return num < 3 ? 0 : 1;
}
public static int c() {
return (b() << 2) + (b() << 1) + b();
}
public static int d() {
int num = 0;
do {
num = c();
}while ( num == 0);
return num;
}
public static void main(String[] args) {
int times = 10000;
int [] arr = new int[8];
for (int i = 0; i < times; i++) {
int value = B();
arr[value] ++ ;
}
for (int i = 0; i < arr.length; i++) {
System.out.println("数字" + i + "出现次数为" + arr[i]);
}
}
6、给定一个固定的黑盒函数 f() 0 和 1 都是固定的概率 但是概率不同
0的概率 是P
1的概率 是 1-P
在不改变黑盒函数的情况下,给一个相同固定概率的函数;
public static int A() {
return Math.random() < 0.75 ? 0 : 1 ;
}
public static int B() {
int num = 0 ;
do {
num = A();
}while (num == A());
return num;
}
总结
提示:
这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。