pytorch实现VGG16 (2)

VGG16Net.py

from torch import nn

class Vgg16_net(nn.Module):
    def __init__(self):
        super(Vgg16_net, self).__init__()


        self.layer1=nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=64,kernel_size=3,stride=1,padding=1), #(32-3+2)/1+1=32   32*32*64
            nn.BatchNorm2d(64),
            #inplace-选择是否进行覆盖运算
            #意思是是否将计算得到的值覆盖之前的值,比如
            nn.ReLU(inplace=True),
            #意思就是对从上层网络Conv2d中传递下来的tensor直接进行修改,
            #这样能够节省运算内存,不用多存储其他变量

            nn.Conv2d(in_channels=64,out_channels=64,kernel_size=3,stride=1,padding=1), #(32-3+2)/1+1=32    32*32*64
            #Batch Normalization强行将数据拉回到均值为0,方差为1的正太分布上,
            # 一方面使得数据分布一致,另一方面避免梯度消失。
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),

            nn.MaxPool2d(kernel_size=2,stride=2)   #(32-2)/2+1=16         16*16*64
        )


        self.layer2=nn.Sequential(
            nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=1,padding=1),  #(16-3+2)/1+1=16  16*16*128
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),

            nn.Conv2d(in_channels=128,out_channels=128,kernel_size=3,stride=1,padding=1), #(16-3+2)/1+1=16   16*16*128
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),

            nn.MaxPool2d(2,2)    #(16-2)/2+1=8     8*8*128
        )

        self.layer3=nn.Sequential(
            nn.Conv2d(in_channels=128,out_channels=256,kernel_size=3,stride=1,padding=1),  #(8-3+2)/1+1=8   8*8*256
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),


            nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3,stride=1,padding=1),  #(8-3+2)/1+1=8   8*8*256
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),

            nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3,stride=1,padding=1),  #(8-3+2)/1+1=8   8*8*256
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),

            nn.MaxPool2d(2,2)     #(8-2)/2+1=4      4*4*256
        )

        self.layer4=nn.Sequential(
            nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1),  #(4-3+2)/1+1=4    4*4*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),

            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),   #(4-3+2)/1+1=4    4*4*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),

            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),   #(4-3+2)/1+1=4    4*4*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),

            nn.MaxPool2d(2,2)    #(4-2)/2+1=2     2*2*512
        )

        self.layer5=nn.Sequential(
            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),   #(2-3+2)/1+1=2    2*2*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),

            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),  #(2-3+2)/1+1=2     2*2*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),

            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),  #(2-3+2)/1+1=2      2*2*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),

            nn.MaxPool2d(2,2)   #(2-2)/2+1=1      1*1*512
        )


        self.conv=nn.Sequential(
            self.layer1,
            self.layer2,
            self.layer3,
            self.layer4,
            self.layer5
        )

        self.fc=nn.Sequential(
            #y=xA^T+b  x是输入,A是权值,b是偏执,y是输出
            #nn.Liner(in_features,out_features,bias)
            #in_features:输入x的列数  输入数据:[batchsize,in_features]
            #out_freatures:线性变换后输出的y的列数,输出数据的大小是:[batchsize,out_features]
            #bias: bool  默认为True
            #线性变换不改变输入矩阵x的行数,仅改变列数
            nn.Linear(512,512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),

            nn.Linear(512,256),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),

            nn.Linear(256,10)
        )


    def forward(self,x):
        x=self.conv(x)
        #这里-1表示一个不确定的数,就是你如果不确定你想要reshape成几行,但是你很肯定要reshape成512列
        # 那不确定的地方就可以写成-1

        #如果出现x.size(0)表示的是batchsize的值
        # x=x.view(x.size(0),-1)
        x = x.view(-1, 512)
        x=self.fc(x)
        return x

train.py

import time
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt


def load_dataset(batch_size):
    train_set = torchvision.datasets.CIFAR10(
        root="../../../data_hub/cifar10/data_1", train=True,
        download=True, transform=transforms.ToTensor()
    )
    test_set = torchvision.datasets.CIFAR10(
        root="../../../data_hub/cifar10/data_1", train=False,
        download=True, transform=transforms.ToTensor()
    )
    train_iter = torch.utils.data.DataLoader(
        train_set, batch_size=batch_size, shuffle=True, num_workers=4
    )
    test_iter = torch.utils.data.DataLoader(
        test_set, batch_size=batch_size, shuffle=True, num_workers=4
    )
    return train_iter, test_iter


def train(net, train_iter, criterion, optimizer, num_epochs, device, num_print, lr_scheduler=None, test_iter=None):
    net.train()
    record_train = list()
    record_test = list()

    for epoch in range(num_epochs):
        print("========== epoch: [{}/{}] ==========".format(epoch + 1, num_epochs))
        total, correct, train_loss = 0, 0, 0
        start = time.time()

        for i, (X, y) in enumerate(train_iter):
            X, y = X.to(device), y.to(device)
            output = net(X)
            loss = criterion(output, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            total += y.size(0)
            correct += (output.argmax(dim=1) == y).sum().item()
            train_acc = 100.0 * correct / total

            if (i + 1) % num_print == 0:
                print("step: [{}/{}], train_loss: {:.3f} | train_acc: {:6.3f}% | lr: {:.6f}" \
                    .format(i + 1, len(train_iter), train_loss / (i + 1), \
                            train_acc, get_cur_lr(optimizer)))


        if lr_scheduler is not None:
            lr_scheduler.step()

        print("--- cost time: {:.4f}s ---".format(time.time() - start))

        if test_iter is not None:
            record_test.append(test(net, test_iter, criterion, device))
        record_train.append(train_acc)

    return record_train, record_test


def test(net, test_iter, criterion, device):
    total, correct = 0, 0
    net.eval()

    with torch.no_grad():
        print("*************** test ***************")
        for X, y in test_iter:
            X, y = X.to(device), y.to(device)

            output = net(X)
            loss = criterion(output, y)

            total += y.size(0)
            correct += (output.argmax(dim=1) == y).sum().item()

    test_acc = 100.0 * correct / total

    print("test_loss: {:.3f} | test_acc: {:6.3f}%"\
          .format(loss.item(), test_acc))
    print("************************************\n")
    net.train()

    return test_acc


def get_cur_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


def learning_curve(record_train, record_test=None):
    plt.style.use("ggplot")

    plt.plot(range(1, len(record_train) + 1), record_train, label="train acc")
    if record_test is not None:
        plt.plot(range(1, len(record_test) + 1), record_test, label="test acc")

    plt.legend(loc=4)
    plt.title("learning curve")
    plt.xticks(range(0, len(record_train) + 1, 5))
    plt.yticks(range(0, 101, 5))
    plt.xlabel("epoch")
    plt.ylabel("accuracy")

    plt.show()


import torch.optim as optim


BATCH_SIZE = 128
NUM_EPOCHS = 20
NUM_CLASSES = 10
LEARNING_RATE = 0.02
MOMENTUM = 0.9
WEIGHT_DECAY = 0.0005
NUM_PRINT = 100
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

from VggNet import *
def main():
    net = Vgg16_net()
    net = net.to(DEVICE)

    train_iter, test_iter = load_dataset(BATCH_SIZE)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(
        net.parameters(),
        lr=LEARNING_RATE,
        momentum=MOMENTUM,
        weight_decay=WEIGHT_DECAY,
        nesterov=True
    )
    lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

    record_train, record_test = train(net, train_iter, criterion, optimizer, \
          NUM_EPOCHS, DEVICE, NUM_PRINT, lr_scheduler, test_iter)

    learning_curve(record_train, record_test)


if __name__ == '__main__':
    main()

在这里插入图片描述

这篇和上篇基本差不多,只不过训练模板不一样,上篇链接

训练模板参考自:https://blog.csdn.net/cp1314971/article/details/104396169?spm=1001.2014.3001.5501

  • 2
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch可以使用预训练的VGG16模型来进行图片识别。以下是实现步骤: 1. 导入必要的库和模块: ``` import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn ``` 2. 加载数据集并进行预处理: ``` transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[.485, .456, .406], std=[.229, .224, .225])]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) ``` 3. 加载预训练的VGG16模型: ``` vgg16 = torchvision.models.vgg16(pretrained=True) ``` 4. 修改模型的最后一层,使其适应于CIFAR10数据集: ``` vgg16.classifier[6] = nn.Linear(4096, 10) ``` 5. 定义损失函数和优化器: ``` criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(vgg16.parameters(), lr=.001, momentum=.9) ``` 6. 训练模型: ``` for epoch in range(2): # 进行2个epoch的训练 running_loss = . for i, data in enumerate(trainloader, ): # 获取输入数据 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 前向传播、反向传播、优化 outputs = vgg16(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 统计损失值 running_loss += loss.item() if i % 200 == 1999: # 每200个batch输出一次损失值 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = . print('Finished Training') ``` 7. 测试模型: ``` correct = total = with torch.no_grad(): for data in testloader: images, labels = data outputs = vgg16(images) _, predicted = torch.max(outputs.data, 1) total += labels.size() correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 以上就是使用PyTorch实现VGG16图片识别的步骤。 ### 回答2: Pytorch是目前非常流行的深度学习框架之一,其自带的torchvision模块中已经集成了经典的VGG16模型,我们只需要根据自己的需求进行微调,就能实现基于VGG16的图片识别了。 1. 数据预处理 在使用VGG16模型进行图片识别前,首先需要进行数据预处理,包括图像尺寸调整、标准化等。我们可以使用transforms模块中自带的函数来完成数据预处理。 ``` from torchvision import transforms # 图像大小调整和标准化处理 transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) ``` 2. 加载模型 在使用VGG16模型之前,需要首先加载预训练的权重。在pytorch中,可以通过torchvision.models中的函数来加载预训练的VGG16模型。 ``` import torchvision.models as models # 加载VGG16模型 vgg16 = models.vgg16(pretrained=True) ``` 3. 修改全连接层 由于原始的VGG16模型是用于ImageNet数据集的1000个分类任务,而我们的任务可能只需要对少数类别进行分类,因此需要对全连接层进行微调。这里我们以10个类别的分类为例。 ``` # 修改全连接层 from torch import nn # 冻结前5层卷积层 for param in vgg16.parameters(): param.requires_grad = False # 修改分类器 vgg16.classifier = nn.Sequential( nn.Linear(25088, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 10) ) ``` 4. 训练模型 经过数据预处理和模型微调后,我们就可以开始训练模型了。一般来说,我们需要定义损失函数和优化器,并在数据集上进行训练。 ``` # 定义损失函数 criterion = nn.CrossEntropyLoss() # 定义优化器 optimizer = optim.SGD(vgg16.classifier.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): # 输入数据 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 前向传播 outputs = vgg16(inputs) # 计算损失 loss = criterion(outputs, labels) # 反向传播 loss.backward() # 更新梯度 optimizer.step() # 统计损失 running_loss += loss.item() # 打印日志 if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 ``` 5. 测试模型 在训练完成后,我们需要在测试集上测试模型的准确率。测试时,需要关闭参数的梯度计算,以免影响预测结果。 ``` # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = vgg16(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 以上就是使用pytorch实现VGG16图片识别的流程。当然,具体实现还需要结合自身的需求进行调整和优化,此处仅提供一个基本的参考。 ### 回答3: PyTorch是Facebook开源的深度学习框架,它提供了很多便捷的操作和工具,方便用户进行深度学习模型的设计和实现。其中包括了很多著名的深度学习模型的实现,比如AlexNet、VGG等。接下来,我们就来介绍一下如何用PyTorch实现VGG16图片识别。 VGG是一种经典的卷积神经网络结构,它的主要特点是有很多的卷积层,并且每一层都是3×3的卷积核,所以它被称为VGGNet。在PyTorch中,我们可以使用“torchvision.models.vgg16”模块来加载和使用VGG16模型。以下是一个简单的示例代码: ``` import torch import torchvision import torchvision.transforms as transforms # 加载预训练的VGG16模型 vgg16 = torchvision.models.vgg16(pretrained=True) # 定义测试数据集 transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) testset = torchvision.datasets.ImageFolder(root='path/to/testset', transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) # 定义所有的类别 classes = ('class1', 'class2', ...) # 开始测试 vgg16.eval() # 将模型调整为评估模式 with torch.no_grad(): # 不计算梯度,以节约内存 for data in testloader: images, labels = data outputs = vgg16(images) _, predicted = torch.max(outputs, 1) # 输出预测结果 for i in range(4): print('Predicted: ', classes[predicted[i]]) ``` 在这个代码中,我们首先加载了PyTorch中已预训练的VGG16模型。然后,我们定义了测试数据集,将测试集中的每张图片都缩放到256×256的大小,然后中心裁剪到224×224大小,最后将其转换为张量。我们还将每个通道的像素数值标准化到均值和标准差为0.5的范围内。 在测试时,我们将模型调整为评估模式,并关闭梯度计算以节约内存。对于每一批测试数据,我们将它们传递给模型进行预测,并输出每张图片预测的类别。 通过这个简单的代码示例,我们可以很容易地实现VGG16模型的图片识别。当然,在实际的应用中,我们还需要对模型进行调优,以获得更好的识别效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值