逻辑回归概述


前言

开始学习逻辑回归!!!!


一、逻辑回归——一个叫“回归”的分类器

回归树,随机森林的回归,无一例外他们都是区别于分类算法们,用来处理和预测连续型标签的算法。然而逻辑回归,是一种名为“回归”的线性分类器,其本质是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法

要理解逻辑回归从何而来,得要先理解线性回归。线性回归是机器学习中最简单的的回归算法,他的方程是:
z = θ 0 + θ 1 x 1 + θ 2 x 2 + … + θ n x n z=\theta_0+\theta_1x_1+\theta_2x_2+\ldots+\theta_nx_n z=θ0+θ1x1+θ2x2++θnxn

  • θ \theta θ: 统称为模型的参数
  • θ 0 \theta_0 θ0: 截距(intercept)
  • θ 1 − θ n \theta_1-\theta_n θ1θn: 系数(coefficient)

我们可以使用矩阵来表示这个方程,其中x和 θ \theta θ都可以被看做是一个列矩阵,则有:
z = [ θ 0 , θ 1 , θ 2 … θ n ] ∗ [ x 0 x 1 x 2 … x n ] = θ T x    ( x 0 = 1 ) z=[\theta_0,\theta_1,\theta_2 \ldots\theta_n] * \begin{bmatrix} x_0\\ x_1\\x_2\\ \ldots \\x_n \end{bmatrix} =\theta^Tx ~~(x_0=1) z=[θ0,θ1,θ2θn]x0x1x2xn=θTx  (x0=1)

线性回归的任务,就是构造一个预测函数 来映射输入的特征矩阵x和标签值y的线性关系,而构造预测函数的核心就是找出模型的参数: θ T \theta^T θT θ 0 \theta_0 θ0 ,著名的最小二乘法就是用来求解线性回归中参数的数学方法。

通过函数 ,线性回归使用输入的特征矩阵X来输出一组连续型的标签值y_pred,以完成各种预测连续型变量的任务(比如预测产品销量,预测股价等等)

如果我们的标签是离散型变量,尤其是,如果是满足0-1分布的离散型变量,可以通过引入联系函数(link function),将线性回归方程z变换为g(z),并且令g(z)的值分布在(0,1)之间,且当g(z)接近0时样本的标签为类别0,当g(z)接近1时样本的标签为类别1,这样就得到了一个分类模型。而这个联系函数对于逻辑回归来说,就是Sigmoid函数
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1
在这里插入图片描述

Sigmoid函数的公式和性质

  • Sigmoid函数是一个S型的函数,当自变量z趋近正无穷时,因变量g(z)趋近于1,而当z趋近负无穷时,g(z)趋近于0,它能够将任何实数映射到(0,1)区间,使其可用于将任意值函数转换为更适合二分类的函数。因为这个性质,Sigmoid函数也被当作是归一化的一种方法,与我们之前学过的MinMaxSclaer同理,是属于数据预处理中的**“缩放”功能**,可以将数据压缩到[0,1]之内。区别在于,MinMaxScaler归一化之后,是可以取到0和1的(最大值归一化后就是1,最小值归一化后就是0),但Sigmoid函数只是无限趋近于0和1。

线性回归中 z = θ T x z=\theta^Tx z=θTx,于是我们将 带入,就得到了二元逻辑回归模型的一般形式:
g ( z ) = y ( x ) = 1 1 + e − θ T x g(z)=y(x)=\frac{1}{1+e^{-\theta^Tx}} g(z)=y(x)=1+eθTx1

y ( x ) y(x) y(x)就是逻辑回归返回的标签值, y ( x ) y(x) y(x)的取值在[0,1]之间,因此 y ( x ) y(x) y(x) 1 − y ( x ) 1-y(x) 1y(x)相加之和为1,如果令 y ( x ) y(x) y(x)除以 1 − y ( x ) 1-y(x) 1y(x)可以得到形似几率(odds) y ( x ) 1 − y ( x ) \frac{y(x)}{1-y(x)} 1y(x)y(x),在此基础取对数,可以得到:
l n y ( x ) 1 − y ( x ) = l n ( 1 1 + e − θ T x 1 − 1 1 + e − θ T x ) = l n ( 1 1 + e − θ T x e − θ T x 1 + e − θ T x ) = l n ( 1 e − θ T x ) = l n ( e θ T x ) = θ T x \begin{aligned} ln\frac{y(x)}{1-y(x)}&=ln(\frac{\frac{1}{1+e^{-\theta^Tx}}}{1-\frac{1}{1+e^{-\theta^Tx}}}) \\&=ln(\frac{\frac{1}{1+e^{-\theta^Tx}}}{\frac{e^{-\theta^Tx}}{1+e^{-\theta^Tx}}}) \\&=ln(\frac{1}{e^{-\theta^Tx}}) \\&=ln(e^{\theta^Tx}) \\&=\theta^Tx \end{aligned} ln1y(x)y(x)=ln(11+eθTx11+eθTx1)=ln(1+eθTxeθTx1+eθTx1)=ln(eθTx1)=ln(eθTx)=θTx

y(x)的形似几率取对数的本质其实就是我们的线性回归z,我们实际上是在对线性回归模型的预测结果取
对数几率来让其的结果无限逼近0和1
。因此,其对应的模型被称为对数几率回归****(logisticRegression),也就是我们的逻辑回归,这个名为“回归”却是用来做分类工作的分类器


二、为什么需要逻辑回归

线性回归对数据的要求很严格,比如标签必须满足正态分布,特征之间的多重共线性需要消除等等,而现实中很多真实情景的数据无法满足这些要求,因此线性回归在很多现实情境的应用效果有限。逻辑回归是由线性回归变化而来,因此它对数据也有一些要求,而我们之前已经学过了强大的分类模型决策树和随机森林,它们的分类效力很强,并且不需要对数据做任何预处理。

何况,逻辑回归的原理其实并不简单。一个人要理解逻辑回归,必须要有一定的数学基础,必须理解损失函数,正则化,梯度下降,海森矩阵等等这些复杂的概念,才能够对逻辑回归进行调优。其涉及到的数学理念,不比支持向量机少多少。况且,要计算概率,朴素贝叶斯可以计算出真正意义上的概率,要进行分类,机器学习中能够完成二分类功能的模型简直多如牛毛。因此,在数据挖掘,人工智能所涉及到的医疗,教育,人脸识别,语音识别这些领域,逻辑回归没有太多的出场机会。

无论机器学习领域如何折腾,逻辑回归依然是一个受工业商业热爱,使用广泛的模型,因为它有着不可替代的优点:

  • 逻辑回归对线性关系的拟合效果非常非常非常好:
    特征与标签之间的线性关系极强的数据,比如金融领域中的信用卡欺诈,评分卡制作,电商中的营销预测等等相关的数据,都是逻辑回归的强项。虽然现在有了梯度提升树GDBT,比逻辑回归效果更好,也被许多数据咨询公司启用,但逻辑回归在金融领域,尤其是银行业中的统治地位依然不可动摇(相对的,逻辑回归在非线性数据的效果很多时候比瞎猜还不如,所以如果你已经知道数据之间的联系是非线性的,千万不要迷信逻辑回归)

  • 逻辑回归计算快:
    对于线性数据,逻辑回归的拟合和计算都非常快,计算效率优于SVM和随机森林,在大型数据上尤其能够看得出区别

  • 逻辑回归返回的分类结果不是固定的0,1,而是以小数形式呈现的类概率数字:
    我们因此可以把逻辑回归返回的结果当成连续型数据来利用。比如在评分卡制作时,我们不仅需要判断客户是否会违约,还需要给出确定的”信用分“,而这个信用分的计算就需要使用类概率计算出的对数几率,而决策树和随机森林这样的分类器,可以产出分类结果,却无法帮助我们计算分数(当然,在sklearn中,决策树也可以产生概率,使用接口predict_proba调用就好,但一般来说,正常的决策树没有这个功能)

逻辑回归还有抗噪能力强的优点。福布斯杂志在讨论逻辑回归的优点时,甚至有着“技术上来说,最佳模型的AUC面积低于0.8时,逻辑回归非常明显优于树模型”的说法。并且,逻辑回归在小数据集上表现更好,在大型的数据集上,树模型有着更好的表现

逻辑回归的本质,它是一个返回对数几率的,在线性数据上表现优异的分类器,它主要被应用在金融领域。其数学目的是求解能够让模型对数据拟合程度最高的参数 y ( x ) y(x) y(x)的值,以此构建预测函数 ,然后将特征矩阵输入预测函数来计算出逻辑回归的结果y。注意,虽然我们熟悉的逻辑回归通常被用于处理二分类问题,但逻辑回归也可以做多分类


三、sklearn中的逻辑回归

在这里插入图片描述

在这里插入图片描述


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值