Tyia LIN
码龄4年
关注
提问 私信
  • 博客:18,300
    18,300
    总访问量
  • 36
    原创
  • 2,175,118
    排名
  • 2
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:美国
  • 加入CSDN时间: 2020-09-09
博客简介:

m0_50690440的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得4次评论
  • 获得4次收藏
创作历程
  • 2篇
    2023年
  • 12篇
    2022年
  • 22篇
    2021年
成就勋章
TA的专栏
  • Java_trip
    1篇
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Daily Tips

Tip : Download Source code from Github to local IntelliJ IDEA1. Copy the URL from Github, 2. Open IntelliJ, File -> New -> Project from Version Control3. Paste the URL in below field, then click Clone*** in the right botton corner, we can swithch to differ
原创
发布博客 2023.10.10 ·
103 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

随笔:Spring Test -- Mockito -- 浅谈个人理解@Mock, @MockBean, @InjectMocks

【代码】随笔:Spring Test -- Mockito -- 浅谈个人理解@Mock, @MockBean, @InjectMocks。
原创
发布博客 2023.04.10 ·
571 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

随笔:关于在Mac上Java的安装与多版本切换

.
原创
发布博客 2022.10.12 ·
1029 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Computer Vision L9 -- Vision 3D

Why not using LiDAR3D sensor?It is very expensive It doesn't work in all conditions. In rainy days,laser will interact with a raindrop and not come back to the sensor, in that case we cannot build a complete 3D map.Machine Learning based approach...
原创
发布博客 2022.04.30 ·
164 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L5.5 -- Interpretability of CNN for image detectio

Convolution networks right now seem to be black box to us. We want to know what are the networks learning specifically.When we construct the artificial neural net, we basically follow an analogy to the brain: neurons are kind of loosely based on the su
原创
发布博客 2022.04.28 ·
124 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L8 -- Synthesis

We've been talking a lot about recognition and seeing, understanding the image. What we're talking about now is how to actually make a machine that creates an image.The basic idea behind this is that you actually have two different models that are
原创
发布博客 2022.04.21 ·
92 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L7 -- Self-supervised Learning

How do we make the learning agent just consumes the data itself, when it doesn't get back to access to the labels.the main idea here is we have a dataset with no labels anymore. So what an encoder says is maybe I can just map it to itself.I can l...
原创
发布博客 2022.04.21 ·
3095 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L6 -- Object Tracking

How do we track object over time?For example, the greener the car is saturated, it means the car is moving faster in the direction of down-left (reference is the color map on the right)However, our perception of motion is often an illusion, for examp
原创
发布博客 2022.04.19 ·
2824 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L5 -- Video Recognition

Vedio would be a stack of images in time sequence, so we can still regard it as a function, but it would be in 3-dimensions.
原创
发布博客 2022.03.30 ·
3034 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L4 -- Back Propagation

We can easily find result in forward pass
原创
发布博客 2022.03.28 ·
66 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L5 -- Object Recognition

So the network firstly pick up random weights for each neuron, and output shows that Kitchen has the most probability. While the ground truth is that we, as humans,100% believe it is actually Bedroom. Now that we have preditions (blue chart) and ground t..
原创
发布博客 2022.03.08 ·
93 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L3 -- Machine Learning Intro

What Machine Learning is aiming to do is figuring out what s should be such that function f would map the input x to y.The computer uses the loss function to find/optimizes. It tellshow far away our prediction is from what actually it should be. ...
原创
发布博客 2022.03.07 ·
146 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L2 -- Fourier Transform

And we can do this Fourier Transform for a 2D image as well as we regard image as function.What is Fourier Transform going to do?It takes the original signal and tells us, for all the waves that could sum up to form this signal, what amplit...
原创
发布博客 2022.02.16 ·
1525 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Computer Vision L1 -- Convolution

We know that images can be treated as 2d matrix. But we can also treat it as a function, where we give the location of a pixel (x,y) and get the intensity of that pixel.Now what we can do for denoising is Moving average. Imagine we have a imgae below...
原创
发布博客 2022.02.15 ·
1589 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Multi-optimization (without using weights)

The big challenge in today's engineering field is that how we optimize something where the fitness criteria involves multiple factors and these factors are contradictory.(For example, when we build a bridge, we want it to be stable and light, these two..
原创
发布博客 2021.11.16 ·
205 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Dimension reduction -- L6 for Data Science

Though some features have collinearity to each other, they still carry on some different informantion, so it would be wasteful to just drop one of these features. Can we do better?Yes, by dimension reduction, we can extract the independent information ..
原创
发布博客 2021.11.16 ·
83 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Feature selection, regularization -- L5 for Data Science

*The observations are identically distributed means that we are just making random observations without any bias.* When we have different set of observations, we will get different value of point estimates of coefficients.For each case, the red st...
原创
发布博客 2021.11.10 ·
85 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Review & Gradient Descent -- L4 for Data Science

Goal: We want to find a combination of betas such that it minimized the residual.The interpretatoin of the betas after we get them fitted:Quantify the relation between x_i and y. Like when we change a unit of x_1 in the set of x_i , what is the corr...
原创
发布博客 2021.11.09 ·
83 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Evolutionary Algorithm--Chapter 3 Genetic Programming

Where are we now?When we say linear regression, we know that there is a linear mode. When saying non-linear regression, there is a non-linear model.A symbolic regression is a special case that we don't even know what the type offunction is at ...
原创
发布博客 2021.10.19 ·
90 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Classification -- L3 for Data Science

Classification is a general extension of linear regression.0 means benign and 1 means malignant.In the graph, we can tell that if the average of radius is smaller than 10, it's very likely that the outcome will be benign. And if the radius...
原创
发布博客 2021.10.17 ·
68 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多