9.7不同的二叉搜索树(LC96-M)

文章介绍了如何使用动态规划解决LeetCode上的二叉搜索树问题,通过分析不同节点作为头结点时子树的结构,推导出dp递推公式,计算n个不同元素组成的不同二叉搜索树的数量。时间复杂度为O(n^2),空间复杂度为O(n)。
摘要由CSDN通过智能技术生成

96. 不同的二叉搜索树 - 力扣(LeetCode)

算法:

看到这道题的时候有点懵,可以举几个例子,找规律

n为3的时候:

当1为头结点的时候,其右子树有两个节点,两个节点的布局, 和n 为2的时候两棵树的布局一样

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,两个节点的布局, 和n 为2的时候两棵树的布局一样

当2为头结点的时候,其左右子树都只有一个节点,两个节点的布局, 和n 为1的时候两棵树的布局一样

到这里,我们发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

动规五部曲:

1.确定dp数组及下标

dp[i]:i个不同元素节点组成的二叉搜索树的个数为dp[i]

2.确定递推公式

 dp[i] += dp[以j为头结点左子树节点数量] * dp[以i-1-j为头结点右子树节点数量]

dp[i] += dp[j] * dp[i - j-1]; ,dp[j]为j为头结点左子树节点数量,dp[i - j-1]为以j为头结点右子树节点数量

3.递推初始化

题目说了,n>=1

dp[1] = 1

4.确定遍历顺序

dp[i] += dp[j] * dp[i - j-1];

可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历

for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i; j++) {
        dp[i] += dp[j - 1] * dp[i - j];
    }
}

5.举例推导dp数组

如果自己画图举例的话,基本举例到n为3就可以了,n为4的时候,画图已经比较麻烦了。

正确代码:

class Solution {
    public int numTrees(int n) {
        int[] dp = new int[n+1];
        
        dp[1] = 1;
        dp[0] = 1;
        for(int i=2 ;i<=n ;i++){
            for(int j=0 ;j<=i-1;j++){
                dp[i] += dp[j]*dp[i-j-1];
            }
        }
        return dp[n];

    }
}

注意:

虽然n=0时没有意义,但是实际写代码时发现,如果不对初始化dp[0] =1,循环里面也必须经过dp[0]这个循环。

因为我们在推导dp递推公式时,就用到了dp[0]

时间空间复杂度:

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n)
  • 19
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值