读书笔记:数联网——大数据如何互联
作者:段云峰 鄂海红
第四章 数联网的管理架构
4.1 数据管理
4.1.1 数据标准管理
数据标准管理是指通过一套完整的规范数据、管控流程和技术工具来确保各种重要信息在企业内外的使用和交换都是一致、准确的过程。数据标准管理不是某一个部门的事情,他是在数据层面上对重要业务的统一规范,也是业务规范在数据层面上的实现,数据标准管理实施依赖于各业务部门之间的共识,以及业务部门和技术部门之间的配合。
4.1.2 数据质量管理
数据质量管理是指对数据从计划、获取、存储、共享、维护、应用和消亡生命周期的每个阶段里可能引发的各类数据质量问题,进行识别、度量、监控、预警等一系列管理活动。
改进数据质量有很多方法,例如全面分析和编档E-R图和其他文档中的所有业务规则、字段级别的数据完整性约束、安全控制以及备份和恢复方法。从源头保证数据以规范、可靠的形式入库存储,这不仅对后续工作的分析和计算带来方便,也节省数据清洗带来的耗时和人工成本。
4.1.3 元数据管理
元数据可以按照其用途分为技术元数据、业务元数据和管理元数据等。较强的元数据管理能为数据质量的采集、分析、监控、改进提供高效、有力的强大保障。同时,良好的数据质量管理也能促进元数据管理的持续改进,互相促进完善,共同为一个高质量和高效运转的数据平台提供支持。
数联网中,元数据的表述格式要进行标准化,便于数据接收者能够理解元数据的意思,从而更好地理解数据的含义。
4.1.4数据运维管理
数据运维管理决定了数联网中的数据应用能否高效率地运转。如图4-1所示,为某企业数据运维管理平台的总体架构。该架构展示了在建设数据运维管理平台过程中的各实现模块,接下来按照实施流程依次介绍。

本文介绍了数联网的管理架构,包括数据标准、质量、元数据和运维管理。强调了数据质量管理的重要性,如数据完整性、一致性和准确性,并探讨了数联网中的数据隐私、访问控制和开源环境管理。同时,提出了数据质量评估的四个关键指标:完整性、一致性、准确性及及时性。
最低0.47元/天 解锁文章
1176

被折叠的 条评论
为什么被折叠?



