基础概念理解
数据互联、数据互通、数据互操作
想象一下,你有一个非常大的图书馆,里面有很多书籍。在传统的图书馆中,如果你想要找到一本书,你可能需要亲自去图书馆,然后在书架上一本本地寻找。这个过程就像是科学研究的第三范式,研究者需要亲自参与到数据的查找和处理中。
现在,想象一下,图书馆里的每本书都有一个唯一的条形码,而且图书馆有一个电脑系统,你可以通过输入书名或者作者的名字,电脑就会告诉你这本书在哪里。这个电脑系统就像是数据互联技术,它帮助你快速准确地找到你需要的书籍。
接下来,假设图书馆还允许你通过网络借书,你可以在家里通过电脑借阅书籍,然后书籍会通过快递送到你家。这个过程就像是数据互通技术,它允许数据在不同的系统之间安全地传输。
最后,想象一下,图书馆还提供了一个虚拟现实(VR)系统,你可以在家里戴上VR眼镜,就像真的在图书馆里一样,可以浏览书架,甚至翻阅书籍。这个VR系统就像是数据互操作技术,它允许你以一种新的方式使用数据,而不需要改变数据本身。
总结一下,数据基础设施就像是一个图书馆,它包括了帮助你找到数据的技术(数据互联),允许数据在系统间传输的技术(数据互通),以及允许你以新方式使用数据的技术(数据互操作)。这些技术共同工作,使得数据的管理和使用变得更加高效和安全。
数据基础设施的重要性
数据已经成为继土地、劳动力、资本、技术之后的第五大生产要素。随着大数据和人工智能的发展,数据基础设施成为了产学研用各界关注的焦点和热点。简而言之,数据基础设施就像是一座桥梁,连接着各种数据资源,使得数据能够被有效地收集、处理和应用。
数据基础设施的技术能力
数据基础设施应具备三种关键技术能力:数据互联、数据互通和数据互操作。这些技术能力可以类比为数据的“发现”、“交换”和“使用”。
数据互联:指的是不同系统之间建立连接以发现和定位数据的能力。例如,通过特定的标识和协议,可以找到并获取所需的数据资源。
数据互通:指的是不同系统基于数据互联以交换和调度数据的能力。这涉及到数据在不同系统间安全、高效地传输。
数据互操作:指的是不同系统基于数据互联互通以使用数据的能力。这包括让机器能够理解数据内容,以及在保护数据隐私的前提下进行数据分析和计算。
数据基础设施的挑战与技术发展
与传统的计算模拟型第三范式相比,数据密集型的第四范式在数据处理和应用上有着显著的不同。第四范式强调数据为中心,研究者在数据处理过程中的参与度降低,数据的规模和质量对研究进程和成果有直接影响。
为了应对这些挑战,文章列举了多种技术方案,包括数字对象架构、链接数据、区块链、隐私计算等。这些技术方案旨在解决数据互联、互通、互操作中的安全、隐私和效率问题。
数联网:未来趋势
随着技术的发展,数据基础设施将从“计算为中心”的网络空间向“数据为中心”的数据空间发展演进。这种新的数据基础设施形态被称为“数联网”。数联网将推动网络空间从“计算为中心”向“数据为中心”转型,形成基于互联网和数联网的数据空间。