题目
题目解析
- 此题有两种思路解决,但是无一例外都是需要用到哈希表。
- 第一种解法:通过记录直线的斜率和截距。
具体步骤:
- 写出用于计算任意两点之间斜率和截距的函数,返回值为二元组。
- 枚举任意两点的斜率和截距,当两者均相同时视为同一直线上的点,以斜率和截距为
key
,点的编号为value
,通过哈希表记录下来,如果满足key
相同则需要判断点是否已经出现过,若出现则不需记录该点(正好可用set
). - 更新答案为
key
对应的点最多的个数,即为直线上最多的点数。
- 第二种解法:通过记录直线的斜率。
具体方法(依据该方法论,基本步骤就能成型):
- 由于只通过斜率来判断是否为同一直线,很显然可能存在重合,那么这种情况如何解决呢?我们可以在枚举的过程中解决,我们只需要每一轮对一个点进行所有情况的枚举(取任意另外一点进行更新斜率),并且每一轮情况都单独用一个哈希表解决(非常重要),也就是换点进行枚举时,重新记录各个斜率情况,那么就不会存在重复计算的情况了。
如何算斜率?这个实际上也是一门学问,我们可以用除法得到小数计算,但是这样实际上还是会出现一定的精度损失,最好的办法还是用一个二元组表示,但是需要把二元组化为最简的分数形式!
- 如何把分数二元组化到最简?
我们可以同时把分子分母除以最大公因数实现最简的分数形式。
gcd函数(辗转相除法)实现:
int gcd(int a,int b){
return b ? gcd(b,a%b) : a;
}
第一种解法
效率一般般:
class Solution {
public:
int maxPoints(vector<vector<int>>& points) {
int size = points.size();
if(size==1)
return 1;
//任意两点的选择
int res = 0;
for(int i=0;i<size;i++){
for(int j=i+1;j<size;j++){
//右值引用
pair<double,double>&& t = solve(points[i],points[j]);
auto q = times.find(t);
if(q!=times.end()){
//左值引用
set<int>&s = q->second;
s.insert(i);
s.insert(j);
int x = s.size();
res = max(res,x);
}else{
set<int>&s = times[t];
s.insert(i);
s.insert(j);
int x = s.size();
res = max(res,x);
}
}
}
return res;
}
private:
//hash表用于记录位于同一直线的点的数目
map<pair<double,double>,set<int>>times;
//用于返回k,b以辨认是否为同一直线
pair<double,double> solve(vector<int>& point1,vector<int>& point2){
if(point1[0]==point2[0])return {INT_MAX,point1[0]};
double k = (double)(point1[1]-point2[1])/(point1[0]-point2[0]);
double b = -k*point1[0]+point1[1];
return {k,b};
}
};
第二种解法
效率yyds
class Solution {
public:
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
int maxPoints(vector<vector<int>>& points) {
int n = points.size();
if (n <= 2) {
return n;
}
int ret = 0;
for (int i = 0; i < n; i++) {
//对于每一轮的枚举建立不同的哈希表,在末尾直接对最大结果进行更新
unordered_map<int, int> mp;
for (int j = i + 1; j < n; j++) {
int x = points[i][0] - points[j][0];
int y = points[i][1] - points[j][1];
//对于特殊情况的分数二元组进行特殊处理
if (x == 0) {
y = 1;
} else if (y == 0) {
x = 1;
} else {
//对二元组的正负进行统一
if (y < 0) {
x = -x;
y = -y;
}
//化简二元组
int&& gcdXY = gcd(abs(x), abs(y));
x /= gcdXY, y /= gcdXY;
}
//对当前的mp进行更新
mp[y + x * 20001]++;
}
//根据当前mp记录的答案更新最大值。(注意由于mp中值记录的是有多少个点和该点同斜率,故还需要+1包括自身)
for (auto& [_, num] : mp) {
ret = max(ret, num + 1);
}
}
return ret;
}
};