最小公倍数求解完全解读

什么是最小公倍数?

几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。

例如 1,2,3 的最小公倍数是 6 。

最小公倍数的适用范围:分数的加减法,中国剩余定理(正确的题在最小公倍数内有解,有唯一的解)。

怎么求最小公倍数?

两种求法:

  1. 两数的乘积/最大公约(因)数。
  2. S个数的最小公倍数,为这S个数中所含素因子的最高次方之间的乘积。

所以,当我们求的是比较少的数的最小公倍数的时候,可以通过第一种方法来求解,当需要求解大量数据的最小公倍数,那么请用分解质因数的方法!

接下来详细讲解这个分解质因数的方法:

例如:1,求756,4400,19845,9000的最小公倍数?

756=2*2*3*3*3*74400=2*2*2*2*5*5*1119845=3*3*3*3*5*7*79000=2*2*2*3*3*5*5*5,这里有素数2,3,5,7,11.2最高为4次方=16,3最高为4次方=81,5最高为3次方=125,7最高为2次方=49,还有素数11。得最小公倍数为16*81*125*49*11=87318000

具体例题:选船过河

image-20220101013106092

OJ平台

解法一:简单求公因数得到

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
int main(){
    ll a,b,c;
    cin>>a>>b>>c;
    ll t = a*b/__gcd(a,b);
    cout<<(ll)t*c/__gcd(t,c);
    return 0;
}

解法二:分解质因数得到

#include<bits/stdc++.h>

using namespace std;
int na[10000000];   //TODO 用于存储某个质因数出现的次数,比如na[i]就是i出现的次数
int nmax = 0, nmin = 0;
using ll = long long;
//TODO 用于把n分解为对应的质因数,然后更新对应质因数的最大出现次数
// 最后只需将所有的质因数以及用对应次数连乘即可得到最小公倍数。
void update(int n) {
    int c = n;
    for (int i = 2; i <= c; i++) {
        int cnt = 0;
        if (n == 1)
            break;
        while (n % i == 0 && n != 1) {
            cnt++;
            n /= i;
        }
        nmax = max(nmax, i);
        nmin = min(nmin, i);
        na[i] = max(na[i], cnt);
    }
}

int main() {
    int a, b, c;
    scanf("%d %d %d", &a, &b, &c);
    update(a);
    update(b);
    update(c);
    ll res = 1;
    //TODO 遍历表格,把质因数以及对应的次数连乘
    for (int i = nmin; i <= nmax; i++) {
        if (na[i])
            res *= (ll) pow(i, na[i]);
    }
    cout << res;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值