格理论的基础知识
文章目录
(一)对格的整体认识
1.直观认识
- 物理意义:高维空间中排列规律的点阵
- 具象表达:(如下图:晶格,摘自2012BIU密码学冬令营ppt)
2.历史简述
- 19世纪早期,主要从数学角度研究格,基本未考虑其应用意义
- 1801年从高斯开始,Hermite(1850)、Minkowski(1896)对推动格的研究贡献巨大
- 往后,LLL算法——主要用于求格中的近似最短向量以及实数域上分解多项式
3.密码学与格理论
(1)格在密码学上的运用
- 设计算法:后量子密码学
- 破解算法:如LLL算法破解基于背包的密码学系统
(2)研究价值
- 安全性高(可证明安全)
- 可抵御量子计算机攻击(格点移动难题——格密码学的安全核心,任意移动一个格点,很难从计算上求得是从哪个格点移动得来的)
- 线性结构速度快,适用于小型电子设备,计算开销小
- 与传统密码学的比较
(二)从数学角度定义格
1.数学定义
- 从线性代数角度(最直观反应其代数结构)
这里要注意的是,格的基并不是唯一的,不同的基也可以生成同一个格,如下图(两组不同的向量生成了同一个格):
Problem:不同的基如何生成同一个格?
- 群论定义(可以认为是几何解释,与代数定义等价)
2.格的生成
解决之前提出的问题,满足何种条件的不同的基可以生成相同的格。通常有三种方法:
- 交换基向量的次序
- 取相反向量
- 一个向量与另一个向量整数倍的加和
注意:不可以直接乘某一向量的倍数,这样会改变格点的密度,得到的格不等价
3.格的基本区域(重要)
(1)数学定义
(2)几何理解
- 数学定义较为抽象,我们可以直观地用“周期性”的思想来考虑这个问题:平移这样的一个“基础区域”,我们最终能得到整个格(二维情况下的整个平面)
- 等价表述:把基础区域放于每个格点上,能覆盖整个格平面(这里的平面应该抽象理解)
- 易于理解,同一个基础区域内不存在两个在空间上相同的点
- 基本区域的面积是相等的,与其形状无关
(三)重要概念(仅列举,后单独更)
1.格的行列式:基础区域的面积
2.连续极小:格L中的最短非零向量
3.Gram-Schmit正交化(线性代数)
4.Minkowski定理
5.可证明安全
6.困难性问题
(仅作个人学习笔记,欢迎大家浏览~)
主要参考资料:
1.2012年BIU密码学冬令营视频
2.《格理论与密码学》周福才
3.MIT:Lattice in Computer Science