分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。
输入格式
输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (≤ 100)和随后的 K 行方案,每行按以下格式给出:
Np v[1] v[2] … v[Np]
其中 Np
是该方案中计划攻下的城市数量,后面的系列 v[i]
是计划攻下的城市编号。
输出格式
对每一套方案,如果可行就输出 YES
,否则输出 NO
。
输入样例
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2
输出样例
NO
YES
YES
NO
NO
限制条件
限制条件 | 数量 |
---|---|
代码长度限制 | 16 KB |
时间限制 | 600 ms |
内存限制 | 64 MB |
C++代码
#include <iostream>
using namespace std;
struct single
{
int x;
int y;
};
struct single unimpede[10001]; //通路数组
int attack[10001]; //计划攻打的城市,标为1
int main()
{
int n, m; //敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数
cin >> n >> m;
for(int i = 0; i < m; i++)
{
int p1, p2;
cin >> p1 >> p2;//读入畅通的两地编号
unimpede[i].x = p1;
unimpede[i].y = p2;
}
int k; //k个方案
cin >> k;
for(int i = 0; i < k; i++)
{
for(int s = 0; s <= 10000; s++)
{
attack[s] = 0; //检查每个方案前初始化为0
}
int np; //该方案中计划攻下的城市数量
cin >> np;
for(int j = 0; j < np; j++)
{
int a;
cin >> a; //依次读入要攻打的城市
attack[a] = 1; //并将其记为1
}
int flag = 0;
for(int s = 0; s < m; s++) //遍历给出的m条通路
{
//如果第s条通路的两个城市都没有被攻打,说明这条通路会一直存在,这个方案就不符合要求
if(attack[unimpede[s].x] == 0 && attack[unimpede[s].y] == 0)
{
flag = 1;
break;
}
}
if(flag == 0) //如果所有通路至少有一个城市被攻打(方案符合要求),不进行for循环,flag一直为0
{
cout << "YES" << endl;
}
else
{
cout << "NO" <<endl;
}
}
return 0;
}