通常电磁仿真方式中,计算域会被划分为很多细小单元,每个细小单元上进行麦克斯韦方程组求解,而后得出仿真计算结果。网格影响仿真精度及速度,因此学习网格划分是十分重要的。CST算法FIT(有限积分法)、TLM(传输线矩阵法)、FEM(有限元法)、MOM(矩量法)及CFD(计算流体动力学)等使用不同的网格。
-
FIT和TLM:六面体网格。
-
FEM:四面体网格和平面网格。
-
MOM:表面网格。
-
CFD:八叉树网格。
六面体网格:
-
几何适应性:六面体无法完全贴合材料的边界(即材料跳变)。但CST提供完美边界近似(PBA)和薄层技术(TST),结合六面体网格的有限积分法(FIT),可很好解决这一问题。对复杂结构的适应性较弱。
-
计算精度:较高,尤其在应力梯度较小的位置。
-
设置难度:设置复杂,需要用户更多定义网格形状。
-
应用场景:时域分析,如瞬态电磁场分析。
四面体及表面网格:
-
几何适应性:能贴合实体边界,能贴合材料跳变。对复杂形状结构适应性更强。
-
计算精度:相对较低,可通过高阶单元或加密网格来提高。
-
设置难度:相对简单,自动化高。
-
应用场景:频域分析,如天线设计、微波器件等,四面体网格能更好地适应几何边界。