Educational Codeforces Round 81 (Rated for Div. 2) F.Good Contest \ 洛谷 划艇 组合 计数dp

77 篇文章 0 订阅
10 篇文章 0 订阅

cf传送门
P3643 [APIO2016]划艇

文章目录

题意:

a i a_i ai [ l i , r i ] [l_i,r_i] [li,ri]等概率随机选一个数,求 a a a数组不增的概率。

思路:

这里贴了两个链接,因为这俩题是极其相似的,我们先来说一下洛谷的。
洛谷的也是选一个数,求 a a a数组严格递增的概率。
看到这个很容易写出一个 d p dp dp数组 f [ i ] [ j ] f[i][j] f[i][j]表示到了第 i i i个,第 i i i个选了 j j j个的方案数,转移就是 f [ i ] [ j ] = ∑ c = 0 j − 1 ∑ k = 0 i − 1 f [ k ] [ c ]    j ∈ [ l i , r i ] f[i][j]=\sum _{c=0}^{j-1}\sum _{k=0}^{i-1}f[k][c]\ \ j\in [l_i,r_i] f[i][j]=c=0j1k=0i1f[k][c]  j[li,ri]
初始 f [ 0 ] [ 0 ] = 1 f[0][0]=1 f[0][0]=1,代码如下:

	f[0][0]=1;
	for(int i=1;i<=n;i++)
	    for(int j=p[i].X;j<=p[i].Y;j++)
	        for(int c=0;c<=j-1;c++)
	            for(int k=0;k<=i-1;k++)
	                f[i][j]+=f[k][c],f[i][j]%=mod;
	LL ans=0;
	for(int j=1;j<=n;j++) for(int i=p[j].X;i<=p[j].Y;i++) ans+=f[j][i],ans%=mod;
	cout<<ans%mod<<endl;

显然这个是不能通过本题的,因为本题中 l i , r i l_i,r_i li,ri的范围是 [ 1 , 1 e 9 ] [1,1e9] [1,1e9],所以我们很本能的想到离散化。但是怎么离散化呢?我们这个方程是以点转移的,而离散化之后我们将其转换成了若干个区间,也就是说我们要考虑以区间转移。
重新定义 d p dp dp数组 f [ i ] [ j ] f[i][j] f[i][j]表示到了第 i i i个,第 i i i个选了第 j j j个区间的方案数,这里先介绍一个引理:

[ 0 , L ] [0,L] [0,L]区间中取 n n n个数,要求所有非零数严格递增,则方案数为 C ( n + L , n ) C(n+L,n) C(n+L,n)

这个定理也比较好理解,先考虑没有 0 0 0的情况,这个时候区间为 [ 1 , L ] [1,L] [1,L],显然答案为 C ( L , n ) C(L,n) C(L,n),考虑把 0 0 0加入,比如当前序列 0 , 0 , 0 , . . . , 1 , 2 , . . . , L 0,0,0,...,1,2,...,L 0,0,0,...,1,2,...,L,前面 0 0 0的个数为 n n n个,这个时候从这个序列中选择 n n n个数的时候,方案数为 C ( n + L , n ) C(n+L,n) C(n+L,n),这个与原问题对应,可以得证该引理。
通过这个我们可以优化区间取数的过程。
先考虑原问题,由于第 i i i个学校必须参赛,所以 0 0 0的个数需要减一,所以方案数为 C ( x + L − 1 , x ) C(x+L-1,x) C(x+L1,x) x x x表示可选区间包含第 j j j个区间的数量,那么我们枚举 i , j i,j i,j之后,再枚举上一个学校 p p p的区间 t t t,且前 p p p个学校不在区间 j j j中的情况, x x x就是 p + 1 , . . , i p+1,..,i p+1,..,i个学校中能取到 j j j区间的学校数量,转移方程为:
f [ i ] [ j ] = ∑ p = 0 i − 1 ∑ k = 0 j − 1 f [ p ] [ k ] ∗ C ( x + L − 1 , x ) f[i][j]=\sum _{p=0}^{i-1}\sum _{k=0}^{j-1}f[p][k]*C(x+L-1,x) f[i][j]=p=0i1k=0j1f[p][k]C(x+L1,x)
由于组合数很大,不好预处理,所以组合数一边乘一边求就好了,复杂度 O ( N 4 ) O(N^4) O(N4),让后可以发现用前缀和优化可以去掉一层 N N N,定义 g [ i ] [ j ] = ∑ k = 1 j − 1 f [ i ] [ k ] g[i][j]=\sum _{k=1}^{j-1}f[i][k] g[i][j]=k=1j1f[i][k],优化之后需要倒着更新 g g g数组,方程为 f [ i ] [ j ] = ∑ p = 0 i − 1 g [ p ] [ j − 1 ] ∗ C ( x + L − 1 , x ) f[i][j]=\sum _{p=0}^{i-1}g[p][j-1]*C(x+L-1,x) f[i][j]=p=0i1g[p][j1]C(x+L1,x) i i i从大到小枚举,确保每次使用的时候都是上一层的,并且可以通过最外层从小到大枚举区间来优化一维 g g g数组。
复杂度 O ( N 3 ) O(N^3) O(N3)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=510,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

int n,m;
PII p[N];
LL g[N*2];
LL c[N],inv[N];
vector<int>v;

int find(int x)
{
    return lower_bound(v.begin(),v.end(),x)-v.begin();
}

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);

    inv[1]=1;
    for(int i=2;i<N;i++)
        inv[i]=(mod-mod/i)*inv[mod%i]%mod;
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d%d",&p[i].X,&p[i].Y),v.pb(p[i].X),v.pb(p[i].Y+1);
    sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end());
    for(int i=1;i<=n;i++) p[i].X=find(p[i].X),p[i].Y=find(p[i].Y+1);
    c[0]=1; g[0]=1;
    for(int j=0;j<v.size()-1;j++)
    {
        int len=v[j+1]-v[j];
        for(int i=1;i<=n;i++) c[i]=1ll*c[i-1]*(len+i-1)%mod*inv[i]%mod;
        for(int i=n;i>=1;i--)
        {
            if(p[i].X<=j&&j+1<=p[i].Y)
            {
                LL f=0,fun=len,m=1;
                for(int pp=i-1;pp>=0;pp--)
                {
                    (f+=fun*g[pp]%mod)%=mod;
                    if(p[pp].X<=j&&j+1<=p[pp].Y) fun=c[++m];
                }
                g[i]+=f; g[i]%=mod;
            }
        }
    }
    LL ans=0;
    for(int i=1;i<=n;i++) (ans+=g[i])%=mod;
    printf("%lld\n",ans);



	return 0;
}
/*

*/


再来看这个 c f cf cf的题,与上面那个题不能说一模一样,只能说大致相同。
上面那个题可以有不选的情况,这个题是必须都选才行,所以我们枚举 p p p的时候需要改一下,当 p p p不在 j j j区间的时候就退出。
让后还有一点不同的就是上面那个要求严格递增,这个要求非递增,也就是说我们要在 [ l , r ) [l,r) [l,r)内选 x x x个数使其非递减,这个的方案数为 C ( l e n + x − 1 , x ) C(len+x-1,x) C(len+x1,x),证明方法跟上面的差不多,就是在序列前面补上 x − 1 x-1 x1 0 0 0 l c lc lc y y d s yyds yyds
我们同样可以用上面的前缀和优化,但是这个题是非递增,所以我们应该从大的区间向小的区间转移,所以改成后缀和优化了,需要从大的区间到小的区间枚举即可。
由于求的是概率,所以在最后乘上个分母的逆元即可。

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=10010,mod=998244353,INF=0x3f3f3f3f;
const double eps=1e-6;

int n;
int a[110],b[110];
LL f[N],c[N];
vector<int>v;

int find(int x)
{
    return lower_bound(v.begin(),v.end(),x)-v.begin();
}

LL qmi(LL a,LL b)
{
    LL ans=1%mod;
    a%=mod;
    while(b)
    {
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans%mod;
}

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);

    LL sum=1;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        int l,r; scanf("%d%d",&l,&r);
        v.pb(l); v.pb(r+1);
        a[i]=l; b[i]=r;
        sum*=qmi(r-l+1,mod-2); sum%=mod;
    }
    sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end());
    for(int i=1;i<=n;i++) a[i]=find(a[i]),b[i]=find(b[i]+1);
    int se=v.size();
    f[0]=1;
    for(int j=se-2;j>=0;j--)
    {
        int len=v[j+1]-v[j];
        c[0]=1;
        for(int i=1;i<=n;i++) c[i]=c[i-1]*(len+i-1)%mod*qmi(i,mod-2)%mod;
        for(int i=n;i>=1;i--)
            if(a[i]<=j&&b[i]>=j+1)
            {
                for(int cnt=1,k=i-1;k>=0;k--,cnt++)
                {
                    f[i]+=c[cnt]*f[k]; f[i]%=mod;
                    if(a[k]>j||b[k]<j+1) break;
                }
            }
    }
    LL ans=f[n]*sum%mod;
    printf("%lld\n",ans);







	return 0;
}
/*

*/




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值