题意:
给你一个数组 a a a,保证 a a a中每个数都互不相同,让你构造一个数组 b b b,满足对于任意的 S = x 1 , x 2 , . . . , x k , 1 ≤ x i ≤ n , 0 ≤ k < n S={x_1,x_2,...,x_k},1\le x_i\le n,0\le k< n S=x1,x2,...,xk,1≤xi≤n,0≤k<n,都有 ∑ i = 1 k a x i ≠ ∑ i = 1 k b x i \sum_{i=1}^ka_{x_i}\ne \sum_{i=1}^kb_{x_i} ∑i=1kaxi=∑i=1kbxi.
1 ≤ n ≤ 22 , 0 ≤ a i ≤ 1 e 9 1\le n\le22,0\le a_i\le 1e9 1≤n≤22,0≤ai≤1e9
思路:
千万不要被数据范围迷惑了,构造题有时候真的不能看数据范围。
考虑 a a a是有序的时候,那么 a a a一定是一个严格递增的序列,考虑将 a a a集体向左移动一位, a 1 a_1 a1到 a n a_n an的位置,我们将其视为 b b b,容易证明这个时候 b b b是合法的,下面给出证明。
首先,如果 S S S不包含 n n n的话,那么选出来的集合的和一定有 ∑ i = 1 k a x i < ∑ i = 1 k b x i \sum_{i=1}^ka_{x_i}< \sum_{i=1}^kb_{x_i} ∑i=1kaxi<∑i=1kbxi,这个比较显然,因为每个位置 b i > a i b_i>a_i bi>ai。
如果选出来的位置包含 n n n怎么办?利用补集的思想,对于上面的每个集合 S S S我们都做其补集 S ′ S' S′,此时 S ′ S' S′一定一一对应包含 n n n的所有情况,不难发现,对于每个 S ′ S' S′我们都有 ∑ i = 1 k a x i > ∑ i = 1 k b x i \sum_{i=1}^ka_{x_i}> \sum_{i=1}^kb_{x_i} ∑i=1kaxi>∑i=1kbxi,此时合法。
综上所述,这个 b b b数组在 a a a递增的时候构造出来是合法的。
对于 a a a无序怎么办?显然只需要给相应位置分配 b b b即可。
// Problem: B. Gluttony
// Contest: Codeforces - Codeforces Round #446 (Div. 1)
// URL: https://codeforces.com/problemset/problem/891/B
// Memory Limit: 256 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;
//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;
int n;
int a[N];
int ans[N];
struct Node {
int id,val;
bool operator < (const Node &W) const {
return val<W.val;
}
}b[N];
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),b[i].val=a[i],b[i].id=i;
sort(b+1,b+1+n); sort(a+1,a+1+n);
for(int i=1;i<=n-1;i++) ans[b[i].id]=a[i+1];
ans[b[n].id]=a[1];
for(int i=1;i<=n;i++) printf("%d ",ans[i]);
return 0;
}
/*
*/