Codeforces Round #446 (Div. 1) B. Gluttony 构造 + 补集思想

该博客探讨了一种数组构造问题,当给定一个互不相同的数组aaa,要求构造另一个数组bbb,使得对于所有可能的选择子集S,aaa和bbb的子集和不相等。当aaa有序时,可以通过将aaa元素向左移动一位来构造bbb,证明了其合法性。对于无序的aaa,只需直接分配bbb的位置。博客内容涉及算法设计与分析,数据结构和数学思维。
摘要由CSDN通过智能技术生成

传送门

文章目录

题意:

给你一个数组 a a a,保证 a a a中每个数都互不相同,让你构造一个数组 b b b,满足对于任意的 S = x 1 , x 2 , . . . , x k , 1 ≤ x i ≤ n , 0 ≤ k < n S={x_1,x_2,...,x_k},1\le x_i\le n,0\le k< n S=x1,x2,...,xk,1xin,0k<n,都有 ∑ i = 1 k a x i ≠ ∑ i = 1 k b x i \sum_{i=1}^ka_{x_i}\ne \sum_{i=1}^kb_{x_i} i=1kaxi=i=1kbxi.

1 ≤ n ≤ 22 , 0 ≤ a i ≤ 1 e 9 1\le n\le22,0\le a_i\le 1e9 1n22,0ai1e9

思路:

千万不要被数据范围迷惑了,构造题有时候真的不能看数据范围。

考虑 a a a是有序的时候,那么 a a a一定是一个严格递增的序列,考虑将 a a a集体向左移动一位, a 1 a_1 a1 a n a_n an的位置,我们将其视为 b b b,容易证明这个时候 b b b是合法的,下面给出证明。

首先,如果 S S S不包含 n n n的话,那么选出来的集合的和一定有 ∑ i = 1 k a x i < ∑ i = 1 k b x i \sum_{i=1}^ka_{x_i}< \sum_{i=1}^kb_{x_i} i=1kaxi<i=1kbxi,这个比较显然,因为每个位置 b i > a i b_i>a_i bi>ai

如果选出来的位置包含 n n n怎么办?利用补集的思想,对于上面的每个集合 S S S我们都做其补集 S ′ S' S,此时 S ′ S' S一定一一对应包含 n n n的所有情况,不难发现,对于每个 S ′ S' S我们都有 ∑ i = 1 k a x i > ∑ i = 1 k b x i \sum_{i=1}^ka_{x_i}> \sum_{i=1}^kb_{x_i} i=1kaxi>i=1kbxi,此时合法。

综上所述,这个 b b b数组在 a a a递增的时候构造出来是合法的。

对于 a a a无序怎么办?显然只需要给相应位置分配 b b b即可。

// Problem: B. Gluttony
// Contest: Codeforces - Codeforces Round #446 (Div. 1)
// URL: https://codeforces.com/problemset/problem/891/B
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#include<random>
#include<cassert>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid ((tr[u].l+tr[u].r)>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;

//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;

int n;
int a[N];
int ans[N];
struct Node {
	int id,val;
	bool operator < (const Node &W) const {
		return val<W.val;
	}
}b[N];

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);
	
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]),b[i].val=a[i],b[i].id=i;
	sort(b+1,b+1+n); sort(a+1,a+1+n);
	for(int i=1;i<=n-1;i++) ans[b[i].id]=a[i+1];
	ans[b[n].id]=a[1];
	for(int i=1;i<=n;i++) printf("%d ",ans[i]);
	
	

	return 0;
}
/*

*/









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值