线代复习+降维与度量学习

本文复习了线性代数的基础知识,包括本征值、正交分解、正交投影、正交补和正交投影等,并深入探讨了内积、正交基、规范正交基的概念。接着介绍了线性算子的伴随、自伴算子、正规算子,以及正算子的相关性质。此外,还讨论了等距同构、极分解、奇异值分解(SVD)及其在数据降维中的应用。最后,简述了k近邻学习、低维嵌入方法,如多维缩放(MDS)和主成分分析(PCA),以及核化线性降维和流形学习的基本思想。
摘要由CSDN通过智能技术生成

PART1
在此之前,我们最好复习一下线性代数的知识:以下内容基于ckc 的线代2(H)课程,实际上这个课完全脱离了行列式体系,更适合计科以及更抽象的学科的要求,比如物理。
chap5:
主要是本征值方面的问题:
T v = λ v Tv=\lambda v Tv=λv
这个v就是本征向量 λ 则 是 本 征 值 \lambda 则是本征值 λ
不同特征值对应的特征向量线性无关
存在上三角矩阵等价 T v j ∈ s p a n ( v 1 , . . . , v j ) Tv_j\in span(v1,...,vj) Tvjspan(v1,...,vj)等价于 s p a n ( v 1 , . . . v j ) span(v1,...vj) span(v1,...vj) 在T下不变
对角化会用到这5个等价
1、 设 不 变 子 空 间 有 : V 1 , V 2 , , , V n , d i m V 1 , d i m V 2 , , , d i m V n 设不变子空间有:V1,V2,,,Vn,dimV1,dimV2,,,dimVn V1,V2,,,Vn,dimV1,dimV2,,,dimVn
则分别对应有
本 征 向 量 : λ 1 − > d i m V 1 个 , λ 2 − > d i m V 2 个 , , , λ n − > d i m V n 个 本征向量:\lambda1->dimV1个,\lambda2->dimV2个,,,\lambda n->dimVn个 λ1>dimV1,λ2>dimV2,,,λn>dimVn
2、各个不变子空间的直和等于V
3、V在在T下的dimV个一维不变子空间
4、V可分解为各个本征空间的直和
更强一点的直接就是有dimV个互异本征值
再补充一下商空间,以前一直没有理解
v + U : { v + u : u ∈ U } v+U:\{v+u:u\in U\} v+U:{ v+u:uU}
举个例子, v = ( v 1 , v 2 , v 3 ) , U = { ( x , y , 0 ) : x , y ∈ R } v=(v1,v2,v3),U=\{(x,y,0):x,y\in R\} v=(v1,v2,v3),U={ (x,y,0):x,yR}
这个时候呢就是过(v1,v2,v3)的平面,所有的v+u构成商空间,就是U的所有仿射子集的集合,在这里就是所以平行于U的平面
商空间维数:
d i m ( V / U ) = d i m V − d i m U dim(V/U)=dimV-dimU dim(V/U)=dimVdimU
chap6现在才差不多进入主要部分
内积:正定性,第一位置可加和齐次,共轭对称
内积出现的动机是 R 2 R^2 R2中的范数
我们重新定义范数(不同于简单的欧式距离,实际上我们的内积也不只是欧式内积)
∣ ∣ v ∣ ∣ = < v , v > ||v||=\sqrt{<v,v>} v=<v,v>
之后我们引入了正交性和正交分解
正交分解关键是把v的成分提取出来: c = < u , v > ∣ ∣ v ∣ ∣ 2 c=\frac{<u,v>}{||v||^2} c=v2<u,v>
接下来是规范正交基:实际上我们看一下(1,0,0),(0,1,0),(0,0,1)的性质:范数1(规范),自己和自己内积为1,不同的内积为0(正交),这个性质很好,有种类似筛选的作用
性质不提了,没忘
来个容易忘的:格拉姆-施密特过程其实也还好,通过式子我们这样记:新的vj要扣除前面j-1个向量的成分

e j = v j − < v j , e 1 > e 1 − < v j , e 2 > e 2 − . . . − < v j , e j − 1 > e j − 1 ∣ ∣ v j − < v j , e 1 > e 1 − < v j , e 2 > e 2 − . . . − < v j , e j − 1 > e j − 1 ∣ ∣ e_j=\frac{vj-<vj,e1>e1-<vj,e2>e2-...-<vj,e_j-1>e_j-1}{||vj-<vj,e1>e1-<vj,e2>e2-...-<vj,e_j-1>e_j-1||} ej=vj<vj,e1>e1<vj,e2>e2...<vj,ej1>ej1vj<vj,e1>e1<vj,e2>e2...<vj,ej1>ej1

schur定理:有限维复向量空间的算子T,T关于V的某个规范正交基有上三角矩阵
线性泛函:举个例子: φ ( z i , z 2 , z 3 ) = 2 z 1 − 3 z 2 + 5 z 3 \varphi(zi,z2,z3)=2z1-3z2+5z3 φ(zi,z2,z3)=2z13z2+5z3其中
z = ( z 1 , z 2 , z 3 ) z=(z1,z2,z3) z=(z1,z2,z3)
引入正交补:V中与子集U中的向量都垂直的向量组成的集合 V = U ⨁ U ⊥ V=U\bigoplus U^\perp V=UU
正交投影问题: v = u + w , w ∈ U ⊥ , u ∈ U v=u+w,w\in U^\perp ,u\in U v=u+w,wU,uU那么我们经过正交投影算子投影到U上的只有u这一部分
其实我们可以用正交分解来估计这一部分的值
正交补和正交投影的性质可以自行推导,利用这些理论我们也可以证明一系列的最短问题的结论
chap7
伴随(复习一下) T ∈ L ( V , W ) , 伴 随 指 的 是 这 样 的 函 数 : T ∗ : W − > V : 对 所 有 的 v ∈ V , w ∈ W , 有 < T v , w > = < v , T ∗ w > T\in L(V,W),伴随指的是这样的函数: T^*:W->V:对所有的v\in V,w\in W,有<Tv,w>=<v,T^*w> TL(V,W),:T

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值