维数定理(手推!):证明dim(v1)+dim(v2) = dim(v1+v2) + dim(v1∩v2)

网上看了很多相关的推导,基本大同小异,相关链接(https://www.cnblogs.com/wdfrog/p/8258417.html)
弄的模棱两可,这里自己手推一下,希望能弄的明白一点,在张凯院老师的矩阵论中的推导方法基本也是这样。重点是在于利用交空间

有什么问题欢迎讨论 !/拱手.jpg
证 明 d i m ( V 1 ) + d i m ( V 2 ) = d i m ( V 1 + V 2 ) + d i m ( V 1 ⋂ V 2 ) 假 设 存 在 子 空 间   V 1 , V 2 则   V 1 ⋂ V 2 = L ( z 1 , z 2 ,   . . . , z k ) = L ( Z ) , 表 示 子 空 间 相 交 由 由 Z 为 基 的 向 量 集 组 成 得 V 1 = L ( z 1 , z 2 ,   . . . , z k , x 1 , x 2 ,   . . . , x m ) = L ( Z , X ) V 2 = L ( z 1 , z 2 ,   . . . , z k , y 1 , y 2 ,   . . . , y n ) = L ( Z , Y ) 以 上 V 1 , V 2 , V 1 ⋂ V 2 之 间 的 关 系 易 得 , 不 再 说 明 ( P S : X , Y 可 能 不 存 在 但 X , Y , Z 线 性 无 关 ) 综 上 : d i m ( V 1 ) = l e n ( Z ) + l e n ( X ) d i m ( V 2 ) = l e n ( Z ) + l e n ( Y ) d i m ( V 1 ⋂ V 2 ) = l e n ( Z ) 根 据 定 义 : V 1   + V 2 = { k 1 v 1 + k 2 v 2 ∣ v 1 ∈ V 1 , v 2 ∈ V 2 } 即 证 明 V 1 + V 2 = L ( Z , X , Y ) 问 题 转 换 为 向 量 集 X , Y , Z 线 性 无 关 , 即 证 i f   k 1 x 1 +   . . . + k m x m + p 1 y 1 +   . . . + p n y n + q 1 z 1 +   . . . + q k z k = 0   t h e n   K = P = Q = 0 证 明 如 下 : k 1 x 1 +   . . . + k m x m + q 1 z 1 +   . . . + q k z k = − p 1 y 1 −   . . . − p n y n 已 知 左 式 属 于 V 1 , 则 { − p 1 y 1 −   . . . − p n y n } ∈ V 1 ⋂ V 2 但 从 V 2 的 定 义 已 知 Z , Y 线 性 无 关 , 得 K = P = Q = 0 得 证 \begin{aligned} & 证明dim(V_1)+dim(V_2)=dim(V_1+V_2)+dim(V_1 \bigcap V_2) \hspace{20cm}\\ & 假设存在子空间\space V_1,V_2 \\ &则\space V_1 \bigcap V_2 = L(z_1,z_2,\space_{...},z_k)=L(Z),表示子空间相交由由Z为基的向量集组成\\ &得 \\ &V_1=L(z_1,z_2,\space_{...},z_k,x_1,x_2,\space_{...},x_m) = L(Z,X) \\ &V_2 = L(z_1,z_2,\space_{...},z_k,y_1,y_2,\space_{...},y_n)=L(Z,Y) \\ &以上V_1, V_2, V_1 \bigcap V_2 之间的关系易得,不再说明(PS:X,Y可能不存在但X,Y,Z线性无关) \\ & 综上:\\ & \hspace{6.5cm} dim(V_1) = len(Z)+len(X)\\ & \hspace{6.5cm} dim(V_2) = len(Z)+len(Y)\\ & \hspace{6.7cm} dim(V_1 \bigcap V_2) = len(Z) \\ & 根据定义:V_1 \space+ V_2 = \{k_1v_1+k_2v_2|v_1\in V_1,v_2\in V_2\} \\ &即证明 \\ & \hspace{6.7cm} V_1+V_2 = L(Z,X,Y) \\ & 问题转换为向量集X,Y,Z线性无关,即证\\ & \hspace{4.5cm} if \space k_1x_1+\space_{...}+k_mx_m+p_1y_1+\space_{...}+p_ny_n+q_1z_1+\space_{...}+q_kz_k=0 \space \\ & \hspace{7cm} then \space K=P=Q=0 \\ & 证明如下:\\ & \hspace{5cm} k_1x_1+\space_{...}+k_mx_m+q_1z_1+\space_{...}+q_kz_k = -p_1y_1-\space_{...}-p_ny_n \\ & 已知左式属于V_1,则\{-p_1y_1-\space_{...}-p_ny_n\} \in V_1 \bigcap V_2 \\ & 但从V_2 的定义已知 Z,Y线性无关, 得\\ & \hspace{7.25cm} K=P=Q=0 \\ & 得证 \end{aligned} dim(V1)+dim(V2)=dim(V1+V2)+dim(V1V2) V1,V2 V1V2=L(z1,z2, ...,zk)=L(Z),ZV1=L(z1,z2, ...,zk,x1,x2, ...,xm)=L(Z,X)V2=L(z1,z2, ...,zk,y1,y2, ...,yn)=L(Z,Y)V1,V2,V1V2(PS:X,YX,Y,Z线)dim(V1)=len(Z)+len(X)dim(V2)=len(Z)+len(Y)dim(V1V2)=len(Z)V1 +V2={k1v1+k2v2v1V1,v2V2}V1+V2=L(Z,X,Y)X,Y,Z线if k1x1+ ...+kmxm+p1y1+ ...+pnyn+q1z1+ ...+qkzk=0 then K=P=Q=0:k1x1+ ...+kmxm+q1z1+ ...+qkzk=p1y1 ...pnynV1{p1y1 ...pnyn}V1V2V2Z,Y线K=P=Q=0

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值