【线代笔记】1.2 Lengths and Dot Products - 长度与点积

1.2 Lengths and Dot Products - 长度与点积

上节提到了向量的乘法,本节定义关于vw点积(dot product)

v = ( v 1 , v 2 ) \mathbf{v}=(v_1,v_2) v=(v1,v2) w = ( w 1 , w 2 ) \mathbf{w}=(w_1,w_2) w=(w1,w2)点积内积是一个数字   v ⋅ w \ \mathbf{v}\cdot\mathbf{w}  vw
v ⋅ w = w ⋅ v = v 1 w 1 + v 2 w 2 \mathbf{v}\cdot\mathbf{w} = \mathbf{w}\cdot\mathbf{v} = v_1 w_1 + v_2 w_2 vw=wv=v1w1+v2w2

点积顺序的改变对结果不会产生影响

对于点积来说,两个垂直的向量的点积为0,最典型的例子就是x轴上的 i = ( 1 , 0 ) \mathbf{i}=(1,0) i=(1,0)和y轴上的 j = ( 0 , 1 ) \mathbf{j}=(0,1) j=(0,1)

对于更高维度,点积代表两个向量对应分量的积的和
v ⋅ w = v 1 w 1 + ⋯ + v n w n = ∑ i n v i w i \mathbf{v}\cdot\mathbf{w} = v_1 w_1 + \cdots +v_n w_n = \sum_i^n v_i w_i vw=v1w1++vnwn=inviwi

Lengths and Unit Vectors - 长度与单位向量


有一种特殊的情况为向量与自身的点积,例如有 v = ( 1 , 2 , 3 ) \mathbf{v} = (1,2,3) v=(1,2,3),则有
∣ ∣ v ∣ ∣ 2 = v ⋅ v = [ 1 2 3 ] ⋅ [ 1 2 3 ] = 1 + 4 + 9 = 14 {||\mathbf{v}||}^2 = \mathbf{v}\cdot\mathbf{v} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} =1+4+9=14 v2=vv=123123=1+4+9=14
由此定义向量v的长度||v||为点积= v ⋅ v \mathbf{v}\cdot\mathbf{v} vv的平方根
l e n g t h = ∣ ∣ v ∣ ∣ = v ⋅ v = ( v 1 2 + v 2 2 + ⋯ + v n 2 ) 1 / 2 length = ||v|| = \sqrt{\mathbf{v}\cdot\mathbf{v}} = (v_1^2 + v_2^2 +\cdots +v_n^2)^{1/2} length=v=vv =(v12+v22++vn2)1/2

单位通常用来代表度量单位中的 ,单位向量就是长度为1的向量,即 u ⋅ u = 1 \mathbf{u}\cdot\mathbf{u} =1 uu=1

而标准单位向量就是沿着x轴和y轴的ij。另外,表示与x轴夹角的单位向量为 ( cos ⁡ θ , sin ⁡ θ ) (\cos\theta,\sin\theta) (cosθ,sinθ)

对于一般非零向量,除以自身长度即可得到单位向量
u = v / ∣ ∣ v ∣ ∣ i s   a   u n i t   v e c t o r   i n   t h e   s a m e   d i r e c t i o n   a s   v \mathbf{u} =\mathbf{v} / ||\mathbf{v}||\quad is\ a \ unit \ vector \ in \ the \ same \ direction \ as \ \mathbf{v} u=v/vis a unit vector in the same direction as v

The Angle Between Two Vectors - 向量间的夹角


v垂直于w的时候,两个向量的点积为0,证明过程如下所示
点积为0,向量垂直的证明
零向量 v = 0 \mathbf{v}=\mathbf{0} v=0垂直任何向量,因为零向量与任何向量的点积都为0

对于两个非零向量vw来说,夹角可大于90°,也可以等于或小于90°,因而有余弦公式
v ⋅ w ∣ ∣ v ∣ ∣   ∣ ∣ w ∣ ∣ = cos ⁡ θ \frac{\mathbf{v}\cdot\mathbf{w}}{||\mathbf{v}|| \ ||\mathbf{w}||} = \cos\theta v wvw=cosθ
由上式可以分别推出施瓦兹不等式三角不等式
∣ v ⋅ w ∣ ≤ ∣ ∣ v ∣ ∣   ∣ ∣ w ∣ ∣ |\mathbf{v}\cdot\mathbf{w}| \leq||\mathbf{v}|| \ ||\mathbf{w}|| vwv w

∣ ∣ v + w ∣ ∣ ≤ ∣ ∣ v ∣ ∣ + ∣ ∣ w ∣ ∣ ||\mathbf{v}+\mathbf{w}|| \leq ||\mathbf{v}|| + ||w|| v+wv+w

在上述结论的特殊情况下也可以得出几何平均值小于算术平均值的结论
几何平均与算术平均


总结:本节在向量的基础上,描述了向量的长度,并新定义了点积的运算方式,引出向量的垂直与向量间夹角的计算两个概念

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值