Reconfigurable Intelligent Surface Assisted NOMA Empowered Integrated Sensing and Communication

II. SYSTEM MODEL AND PROBLEM FORMULATION

如图1所示,所考虑的RIS-NOMA-ISAC系统由一个配备 N T N_T NT 天线的双功能基站(BS)、 2 K 2K 2K 单天线用户、一个具有 M M M 个反射元件的均匀线阵(ULA)-RIS和 L L L 个雷达目标组成。我们假设BS到通信用户和雷达目标的直接链路被阻断,即需要或使用RISs时的典型应用场景。因此,在我们的系统中,我们假设所有的通信用户和雷达目标都在BS的NLoS区域。我们仔细部署RIS,以确保所有目标都在RIS的LoS区域。

为了提高频谱效率和降低系统负载,我们假设采用用户聚类技术将 2 K 2K 2K 个用户分成 K K K 个簇。因此,每个集群中有两种类型的用户,即 RIS-near user (RNU)和 RIS-far user(RFU)。一般来说,RNU比RFU更接近RIS。在每个簇中,在传输过程中应用NOMA协议。簇和用户集分别用 K = { 1 , ⋯   , K } \mathcal{K}=\{1,\cdots,K\} K={ 1,,K} U = { 1 , ⋯   , 2 K } \mathfrak{U}=\{1,\cdots,2K\} U={ 1,,2K} 表示。为简便起见,我们将第 k k k 个簇中的RNU和RFU分别表示为用户 U ( k , n ) \mathcal{U}(k,n) U(k,n) 和用户 U ( k , f ) \mathcal{U}(k,f) U(k,f)

在这里插入图片描述

A. Communication model

BS发射的叠加通信信号由
x = ∑ k = 1 K w k ( a k , n s k , n + a k , f s k , f ) , \begin{equation*}\displaystyle \mathrm{x}=\sum_{k=1}^{K}\mathrm{w}_{k}(\sqrt{a_{k,n}}s_{k,n}+\sqrt{a_{k,f}}s_{k,f}), \tag{1}\end{equation*} x=k=1Kwk(ak,n sk,n+ak,f sk,f),(1)

其中 w k ∈ C N T × 1 \mathbf{w}_{k}\in\mathcal{C}^{N_{\mathrm{T}}\times 1} wkCNT×1 是第 k k k 个簇的主动波束形成向量, s k , i s_{k,i} sk,i 表示发送给用户 U ( k , i ) \mathcal{U}(k,i) U(k,i) 的通信信号, E ( s k , i H s k , i ) = 1 \mathbb{E}(s_{k,i}^{H}s_{k,i})=1 E(sk,iHsk,i)=1 , a k , i ,a_{k,i} ,ak,i 是对应的功率分配系数, i ∈ { n , f } , k ∈ K i\in\{n,f\},k\in\mathcal{K} i{ n,f},kK。设 G ∈ C M × N T \mathbf{G}\in\mathcal{C}^{M\times N_{\mathrm{T}}} GCM×NT g k , i ∈ C M × 1 \mathbf{g}_{k,i}\in\mathcal{C}^{M\times 1} gk,iCM×1 分别为通信链路 BS → \rightarrow RIS 和 RIS → U ( k , i ) \rightarrow\mathcal{U}(k,i) U(k,i) 的信道系数。在RIS的帮助下,用户 U ( k , i ) \mathcal{U}(k,i) U(k,i) 接收到的信号可以数学表示为

y k , i = ( g k , i H Θ G ) ∑ k = 1 K w k ( a k , n s k , n + a k , f s k , f ) + z k , i , \begin{equation*}y_{k,i}=(\displaystyle \mathbf{g}_{k,i}^{H}\boldsymbol{\Theta G})\sum_{k=1}^{K}\mathbf{w}_{k}(\sqrt{a_{k,n}}s_{k,n}+\sqrt{a_{k,f}}s_{k,f})+z_{k,i}, \tag{2}\end{equation*} yk,i=(gk,iHΘG)k=1Kwk(ak,n sk,n+ak,f sk,f)+zk,i,(2)

其中 Θ = diag ⁡ ( v ) \Theta=\operatorname{diag}(\mathbf{v}) Θ=diag(v) 为RIS的对角线相移矩阵, v = [ e j θ 1 R I S e j θ 2 R I S ⋯ e j θ M R I S ] \mathbf{v}=[e^{j\theta_{1}^{\mathrm{RIS}}}e^{j\theta_{2}^{\mathrm{RIS}}}\cdots e^{j\theta_{M}^{\mathrm{RIS}}}] v=[ejθ1RISejθ2RISejθMRIS] 为被动波束形成矢量。RIS中, θ m R I S ∈ [ 0 , 2 π ) \theta_{m}^{\mathrm{RIS}}\in[0,2\pi) θmRIS[0,2π) 表示第m个反射元相移, m ∈ M m\in\mathcal{M} mM z k , i ∼ C N ( 0 , σ 2 ) z_{k,i}\sim\mathcal{C N}(0,\sigma^{2}) zk,iCN(0,σ2) 为加性高斯白噪声(AWGN), M = { 1 , 2 , ⋯   , M } \mathcal{M}=\{1,2,\cdots,M\} M={ 1,2,,M} 为反射元集。

在本文提出的 RIS-NOMA-ISAC 系统中,采用逐次干扰抵消(successive interference cancellation,SIC)技术对同一集群内的用户信号进行解码。我们假设每个簇中的解码顺序是固定的。特别地,用户 U ( k , n ) \mathcal{U}(k,n) U(k,n) 首先解码用户 U ( k ,   f ) \mathcal{U}(k,\ f) U(k, f) 的信号,从它的观测中减去这个信号来解码它自己的信息。因此,用户 U ( k , n ) \mathcal{U}(k,n) U(k,n) 译码用户 U ( k ,   f ) \mathcal{U}(k,\ f) U(k, f) 信号的可达速率为

R k , f → n = log ⁡ 2 ( 1 + a k , f ∣ g k , n H Θ G w k ∣ 2 I k , n iner + I k , n iter + σ 2 ) , \begin{equation*}R_{k,f\rightarrow n}=\displaystyle \log_{2}\left(1+\frac{a_{k,f}|\mathbf{g}_{k,n}^{H}\mathbf{\Theta}\mathbf{G w}_{k}|^{2}}{I_{k,n}^{\text{iner}}+I_{k,n}^{\text{iter}}+\sigma^{2}}\right), \tag{3}\end{equation*} Rk,fn=log2(1+Ik,niner+Ik,niter+σ2ak,fgk,nHΘGwk2),(3)

其中 I k , n iner = a k , n ∣ g k , n H Θ G w k ∣ 2 I_{k,n}^{\text{iner}}=a_{k,n}|\mathbf{g}_{k,n}^{H}\boldsymbol{\Theta}\mathbf{G w}_{k}|^{2} Ik,niner=ak,ngk,nHΘGwk2 I k , n i t e r = ∑ k ~ ≠ k K ∣ g k , n H Θ G w k ~ ∣ 2 I_{k,n}^{\mathrm{iter}}= \displaystyle \sum_{\widetilde{k}\neq k}^{K}|\mathbf{g}_{k,n}^{H}\boldsymbol{\Theta G}\mathbf{w}_{\widetilde{k}}|^{2} Ik,niter=k =kKgk,nHΘGwk 2

I k , n iner I_{k,n}^{\text{iner}} Ik,niner 表示簇间的干扰,该信号是发送给用户 U ( k , n ) \mathcal{U}(k,n) U(k,n)的; I k , n i t e r I_{k,n}^{\mathrm{iter}} Ik,niter 是来自别的簇的干扰

如果上述解码成功,那么用户

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

No_one-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值