Multiuser Communications with Movable-Antenna Base Station

II. SYSTEM MODEL AND PROBLEM FORMULATION

如图1所示, K K K 个单 FPA 用户由配备 M M M 个MAs的BS服务,每个MAs通过柔性电缆连接到RF链上,从而能够在BS的局部二维(2D)区域 C r \mathcal{C}_{r} Cr 中移动,以改善与用户的信道条件。我们考虑用户在给定频带的上行链路上同时与BS通信的空分多址(SDMA),因此假设用户数量不超过BS上的MAs数量,即 K ≤ M K≤M KM。第 m m m 个的位置接收MA可以用它的笛卡尔坐标 r m = [ x m , y m ] T ∈ C r \mathbf{r}_{m}=\left[x_{m}, y_{m}\right]^{\mathrm{T}} \in \mathcal{C}_{r} rm=[xm,ym]TCr 表示,当 1 ≤ m ≤ M 1≤m≤M 1mM 时。在不失一般性的情况下,将天线运动的二维区域,即 C r \mathcal{C}_{r} Cr,假设为大小为 A × A A ×A A×A 的方形区域。

BS接收到的信号使用 digital combining matrix 进行处理,

y = W H H ( r ~ ) P 1 / 2 s + W H n \mathbf{y}=\mathbf{W}^{\mathrm{H}} \mathbf{H}(\tilde{\mathbf{r}}) \mathbf{P}^{1 / 2} \mathbf{s}+\mathbf{W}^{\mathrm{H}} \mathbf{n} y=WHH(r~)P1/2s+WHn

其中 W = [ w 1 , w 2 , ⋯   , w K ] ∈ C M × K \mathbf{W}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{K}\right] \in \mathbb{C}^{M \times K} W=[w1,w2,,wK]CM×K 为BS处的接收结合矩阵, H ( r ~ ) = [ h 1 ( r ~ ) , h 2 ( r ~ ) , ⋯   , h K ( r ~ ) ] ∈ C M × K \mathbf{H}(\tilde{\mathbf{r}})=\left[\mathbf{h}_{1}(\tilde{\mathbf{r}}), \mathbf{h}_{2}(\tilde{\mathbf{r}}), \cdots, \mathbf{h}_{K}(\tilde{\mathbf{r}})\right] \in\mathbb{C}^{M \times K} H(r~)=[h1(r~),h2(r~),,hK(r~)]CM×K 为从所有 K K K 个用户到BS处的 M M M 个MAs的信道矩阵,其中 r ~ = [ r 1 T , r 2 T , ⋯   , r M T ] T \tilde{\mathbf{r}}=\left[\mathbf{r}_{1}^{\mathrm{T}}, \mathbf{r}_{2}^{\mathrm{T}}, \cdots, \mathbf{r}_{M}^{\mathrm{T}}\right]^{\mathrm{T}} r~=[r1T,r2T,,rMT]T 表示MAs的APV(antenna position vector), P 1 / 2 = diag ⁡ { p 1 , p 2 , ⋯   , p K } \mathbf{P}^{1 / 2}=\operatorname{diag}\left\{\sqrt{p}_{1}, \sqrt{p}_{2}, \cdots, \sqrt{p_{K}}\right\} P1/2=diag{p 1,p 2,,pK } 为功率矩阵。 p k , 1 ≤ k ≤ K p_{k}, 1 \leq k \leq K pk,1kK 表示用户 K K K 的发射功率, s \mathbf s s 为具有 normalized power 的用户的独立同分布(i.i.d)发射信号向量,即 E ( s s H ) = I K \mathbb{E}\left(\mathbf{s s}^{\mathrm{H}}\right)=\mathbf{I}_{K} E(ssH)=IK n ∼ C N ( 0 , σ 2 I M ) \mathbf{n} \sim \mathcal{C N}\left(0, \sigma^{2} \mathbf{I}_{M}\right) nCN(0,σ2IM) 是零均值的加性高斯白噪声(AWGN),具有协方差矩阵 σ 2 I M \sigma^{2} \mathbf{I}_{M} σ2IM 的向量。

A. Channel Model

我们使用了[16]中基于场响应的信道模型,其中信道响应是收发机之间多个信道路径的系数的叠加。对于所考虑的 MA-aided 多用户通信系统,我们假设BS与用户之间满足远场条件,因为BS处MAs的移动区域的大小远远小于信号的传播距离。因此,对于每个用户,多个信道路径的到达角(AoAs)和复路径系数的幅值不会因MAs的不同位置而改变,这意味着在接收区域中只有多个信道路径的相位变化。

L k L_k Lk 表示用户 k k k 在BS处接收信道路径的总数, 1 ≤ k ≤ K 1≤k≤K 1kK。则用户 k k k 在第 m m m 个MA点位置与BS参考点 r 0 = [ 0 , 0 ] T \mathbf{r}_{0}=[0,0]^{T} r0=[0,0]T 处的第 l l l 条路径的信号传播相位差为

ρ k , l ( r m ) = x m sin ⁡ θ k , l cos ⁡ ϕ k , l + y m cos ⁡ θ k , l , (2) \rho_{k, l}\left(\mathbf{r}_{m}\right)=x_{m} \sin \theta_{k, l} \cos \phi_{k, l}+y_{m} \cos \theta_{k, l},\tag{2} ρk,l(rm)=xmsinθk,lcosϕk,l+ymcosθk,l,(2)

其中 θ k , l \theta_{k, l} θk,l ϕ k , l \phi_{k, l} ϕk,l 为用户 k k k 与 BS 之间第 l l l 条接收路径的仰角(elevation)和方位角(azimuth)。因此,用户 k k k 和BS处第 m m m 个MA之间的接收信道路径的场响应矢量(field-response vector,FRV)由下式给出[16]

f k ( r m ) = [ e j 2 π λ ρ k , 1 ( r m ) , e j 2 π λ ρ k , 2 ( r m ) , … , e j 2 π λ ρ k , L k ( r m ) ] T \mathbf{f}_{k}\left(\mathbf{r}_{m}\right)=\left[e^{j \frac{2 \pi}{\lambda} \rho_{k, 1}\left(\mathbf{r}_{m}\right)}, e^{j \frac{2 \pi}{\lambda} \rho_{k, 2}\left(\mathbf{r}_{m}\right)}, \ldots, e^{j \frac{2 \pi}{\lambda} \rho_{k, L_{k}}\left(\mathbf{r}_{m}\right)}\right]^{\mathrm{T}} fk(rm)=[ejλ2πρk,1(rm),ejλ2πρk,2(rm),,ejλ2πρk,Lk(rm)]T

因此,用户 k k k 到BS之间的信道向量为
h k ( r ~ ) = F k H ( r ~ ) g k , \mathbf{h}_{k}(\tilde{\mathbf{r}})=\mathbf{F}_{k}^{\mathrm{H}}(\tilde{\mathbf{r}}) \mathbf{g}_{k}, hk(r~)=FkH(r~)gk,

其中 F k ( r ~ ) = [ f k ( r 1 ) , f k ( r 2 ) , ⋯   , f k ( r M ) ] ∈ C L k × M \mathbf{F}_{k}(\tilde{\mathbf{r}})=\left[\mathbf{f}_{k}\left(\mathbf{r}_{1}\right), \mathbf{f}_{k}\left(\mathbf{r}_{2}\right), \cdots, \mathbf{f}_{k}\left(\mathbf{r}_{M}\right)\right] \in \mathbb{C}^{L_{k} \times M} Fk(r~)=[fk(r1),fk(r2),,fk(rM)]CLk×M 表示BS处的场响应矩阵(field-response matrix,FRM), g k = [ g k , 1 , g k , 2 , ⋯   , g k , L k ] T \mathbf{g}_{k}=\left[g_{k, 1}, g_{k, 2}, \cdots, g_{k, L_{k}}\right]^{\mathrm{T}} gk=[gk,1,gk,2,,gk,Lk]T 表示路径响应向量(path-response vector,PRV),表示从用户 k k k 到接收区域参考点的多路径响应系数。可以看出,第 m m m 个MA与用户 k k k 之间的通道系数 [ h k ( r ~ ) ] m = f k ( r m ) H g k \left[\mathbf{h}_{k}(\tilde{\mathbf{r}})\right]_{m}=\mathbf{f}_{k}\left(\mathbf{r}_{m}\right)^{\mathrm{H}} \mathbf{g}_{k} [hk(r~)]m=fk(rm)Hgk f k ( r m ) H \mathbf{f}_{k}\left(\mathbf{r}_{m}\right)^{\mathrm{H}} fk(rm)H 中单位模量元素加权后的 g k \mathbf{g}_{k} gk 中所有元素之和。因此,由于多个通道路径的相位变化,每个MA的微小运动可以显著改变所有用户的通道矢量(而它们的幅度变化相对较小,因此可以忽略不计)。

B. Problem Formulation

在BS处,用户 k k k 的接收SINR为
γ k = ∣ w k H h k ( r ~ ) ∣ 2 p k ∑ i = 1 , i ≠ k K ∣ w k H h i ( r ~ ) ∣ 2 p i + ∥ w k ∥ 2 2 σ 2 \gamma_{k}=\frac{\left|\mathbf{w}_{k}^{\mathrm{H}} \mathbf{h}_{k}(\tilde{\mathbf{r}})\right|^{2} p_{k}}{\sum_{i=1, i \neq k}^{K}\left|\mathbf{w}_{k}^{\mathrm{H}} \mathbf{h}_{i}(\tilde{\mathbf{r}})\right|^{2} p_{i}+\left\|\mathbf{w}_{k}\right\|_{2}^{2} \sigma^{2}} γk=i=1,i=kK wkHhi(r~) 2pi+wk22σ2 wkHhk(r~) 2pk

因此,用户 k k k 的可达速率计算为
R k = log ⁡ 2 ( 1 + γ k ) R_{k}=\log _{2}\left(1+\gamma_{k}\right) Rk=log2(1+γk)

需要强调的是,与传统的FPAs不同,每个用户的可实现率取决于APV r ~ \tilde{\mathbf r} r~,它决定了信道矩阵 H ( r ~ ) \mathbf{H}(\tilde{\mathbf{r}}) H(r~),从而影响对应的最优接收组合矩阵 W \bf W W 和发射功率矩阵 P \mathbf P P

在本文中,我们的目标是最大化所有用户的最小可达速率,通过共同优化BS处MAs的 antenna position vector APV,即 r ~ \tilde{\mathbf r} r~,它们的接收组合矩阵,即 W \bf W W,发射功率矩阵,即 P \mathbf P P,来提高整体性能。最大最小速率优化问题表示为

max ⁡ r ~ , W , P min ⁡ k { R k }  s.t.  r m ∈ C r , 1 ≤ m ≤ M ∥ r m − r i ∥ 2 ≥ D , 1 ≤ m ≠ i ≤ M , 0 ≤ p k ≤ p max ⁡ , 1 ≤ k ≤ K . \begin{aligned} \max _{\tilde{\mathbf{r}}, \mathbf{W}, \mathbf{P}} & \min _{k}\left\{R_{k}\right\} \\ \text { s.t. } & \mathbf{r}_{m} \in \mathcal{C}_{r}, 1 \leq m \leq M \\ & \left\|\mathbf{r}_{m}-\mathbf{r}_{i}\right\|_{2} \geq D, 1 \leq m \neq i \leq M, \\ & 0 \leq p_{k} \leq p_{\max }, 1 \leq k \leq K . \end{aligned} r~,W,Pmax s.t. kmin{Rk}rmCr,1mMrmri2D,1m=iM,0pkpmax,1kK.

The FRI(field-response information)in the angular domain, including AoAs and PRVs, is assumed to be known, which can be acquired by using channel estimation methods for MA systems, such as STRCS in [22].

约束(7b)表明每个MA只能在给定的接收区域 C r \mathcal{C}_{r} Cr 内移动。约束(7c)确保在实际实施中BS最小 MA 间距离 D D D。约束(7d)确保每个用户的发射功率是非负的,并且不超过其最大值 p max ⁡ p_{\max } pmax

请注意,问题(7)是高度非凸的,很难解决,因为目标函数(7a)在APV r ~ \tilde{\mathbf r} r~、接收组合矩阵 W \bf W W 和发射功率矩阵 P \mathbf P P 上是非凹/非凸的。此外,三个高维向量/矩阵变量彼此高度耦合。现有的优化工具无法直接用于求解复杂度为 M M M K K K 的多项式,问题(7)的全局最优解。接下来,我们将开发一种基于PSO的双环迭代算法,以获得问题(7)的次最优解。

III. PROPOSED SOLUTION

由于在问题(7)的优化变量中有三个高度耦合的矩阵/向量,传统的交替优化方法通过优化其中一个而其他两个被固定的方法可能不会很好地工作,因为它可能导致一个不希望的局部最优解。例如,由于其他APV解的信道向量与接收组合矩阵不匹配,在下一次迭代中,基于给定APV和发射功率矩阵的最优接收组合矩阵,会将APV的优化空间缩小到给定APV周围的一个很小的区域。

为了解决这一问题,我们提出了一种基于PSO算法的双环迭代算法。在内环中,针对任意给定的APV,提出了一种 BCD-based 的算法,迭代求解接收组合和发射功率优化问题。在外环中,采用PSO-based 的算法对 APV 进行优化,其中每个粒子(即APV)的 fitness function 为内环中获得的最大最小可达速率。所提出的双环迭代算法的整个流程图如图2所示。

在这里插入图片描述

A. Receive Combining and Transmit Power Optimization

在提出的算法的内循环中,为了计算每个粒子,即表示一个APV解,的 fitness value,我们需要解决以下问题来确定任意给定APV的接收组合矩阵和发射功率矩阵:

max ⁡ W , P min ⁡ k { R k }  s.t.  0 ≤ p k ≤ p max ⁡ , 1 ≤ k ≤ K . \begin{array}{l} \max _{\mathbf{W}, \mathbf{P}} \min _{k}\left\{R_{k}\right\} \\ \text { s.t. } 0 \leq p_{k} \leq p_{\max }, 1 \leq k \leq K . \end{array} maxW,Pmink{Rk} s.t. 0pkpmax,1kK.

问题(8)之前已经在现有的文献[25]-[27]中进行了研究,然而,这通常需要很高的计算复杂度。由于问题(8)的解应该在迭代过程中被替换到外循环中,因此需要解决问题(8)的低复杂度算法。为此,我们开发了一种 BCD-based 的低计算复杂度算法,其中接收组合矩阵和发射功率矩阵交替优化,另一个固定。

注意,对于任意给定的APV r ~ \tilde{\mathbf r} r~ 和发射功率矩阵 P \bf P P,基于最小均方误差(MMSE)接收机[28]-[30],可以以封闭形式导出最优接收组合矩阵 W \bf W W,即

W ^ ( r ~ , P ) = ( H ( r ~ ) P H ( r ~ ) H + σ 2 I M ) − 1 H ( r ~ ) ≜ [ w ^ 1 , w ^ 2 , ⋯   , w ^ K ] \begin{aligned} \hat{\mathbf{W}}(\tilde{\mathbf{r}}, \mathbf{P}) & =\left(\mathbf{H}(\tilde{\mathbf{r}}) \mathbf{P H}(\tilde{\mathbf{r}})^{\mathrm{H}}+\sigma^{2} \mathbf{I}_{M}\right)^{-1} \mathbf{H}(\tilde{\mathbf{r}}) \\ & \triangleq\left[\hat{\mathbf{w}}_{1}, \hat{\mathbf{w}}_{2}, \cdots, \hat{\mathbf{w}}_{K}\right] \end{aligned} W^(r~,P)=(H(r~)PH(r~)H+σ2IM)1H(r~)[w^1,w^2,,w^K]

其中 w ^ k = ( H ( r ~ ) P H ( r ~ ) H + σ 2 I M ) − 1 h k ( r ~ ) \hat{\mathbf{w}}_{k}=\left(\mathbf{H}(\tilde{\mathbf{r}}) \mathbf{P H}(\tilde{\mathbf{r}})^{\mathrm{H}}+\sigma^{2} \mathbf{I}_{M}\right)^{-1} \mathbf{h}_{k}(\tilde{\mathbf{r}}) w^k=(H(r~)PH(r~)H+σ2IM)1hk(r~)。将(9)代入(5),则(5)中用户k的接收SINR可改写为

γ ^ k = p k [ A ] k , k ∑ i = 1 , i ≠ k K p i [ A ] k , i + b k \hat{\gamma}_{k}=\frac{p_{k}[\mathbf{A}]_{k, k}}{\sum_{i=1, i \neq k}^{K} p_{i}[\mathbf{A}]_{k, i}+b_{k}} γ^k=i=1,i=kKpi[A]k,i+bkpk[A]k,k

式中 [ A ] k , i ≜ ∣ w ^ k H h i ( r ~ ) ∣ 2 = ∣ h k H ( r ~ ) ( H ( r ~ ) P H ( r ~ ) H + σ 2 I M ) − 1 h i ( r ~ ) ∣ 2 , 1 ≤ k , i ≤ K [\mathbf{A}]_{k, i} \triangleq \left|\hat{\mathbf{w}}_{k}^{\mathrm{H}} \mathbf{h}_{i}(\tilde{\mathbf{r}})\right|^{2} =\left|\mathbf{h}_{k}^{\mathrm{H}}(\tilde{\mathbf{r}})\left(\mathbf{H}(\tilde{\mathbf{r}}) \mathbf{P H}(\tilde{\mathbf{r}})^{\mathrm{H}}+\sigma^{2} \mathbf{I}_{M}\right)^{-1} \mathbf{h}_{i}(\tilde{\mathbf{r}})\right|^{2}, 1 \leq k, i \leq K [A]k,i w^kHhi(r~) 2= hkH(r~)(H(r~)PH(r~)H+σ2IM)1hi(r~) 2,1k,iK 是矩阵 A ∈ C K × K \mathbf{A} \in \mathbb{C}^{K \times K} ACK×K 的第 k k k 行第 i i i 列的项。 b k ≜ ∥ w ^ k ∥ 2 2 σ 2 = ∥ ( H ( r ~ ) P H ( r ~ ) H + σ 2 I M ) − 1 h k ( r ~ ) ∥ 2 2 σ 2 , 1 ≤ k ≤ K b_{k} \triangleq\left\|\hat{\mathbf{w}}_{k}\right\|_{2}^{2} \sigma^{2}=\left\|\left(\mathbf{H}(\tilde{\mathbf{r}}) \mathbf{P H}(\tilde{\mathbf{r}})^{\mathrm{H}}+\sigma^{2} \mathbf{I}_{M}\right)^{-1} \mathbf{h}_{k}(\tilde{\mathbf{r}})\right\|_{2}^{2} \sigma^{2}, 1 \leq k \leq K bkw^k22σ2= (H(r~)PH(r~)H+σ2IM)1hk(r~) 22σ2,1kK,是列向量 b = [ b 1 , b 2 , ⋯   , b K ] T ∈ C K × 1 \mathbf{b}=\left[b_{1}, b_{2}, \cdots, b_{K}\right]^{\mathrm{T}} \in \mathbb{C}^{K \times 1} b=[b1,b2,,bK]TCK×1 的第 k k k 个元素。

对于任何给定的APV r ~ \tilde{\mathbf r} r~ 和接收组合矩阵 W \bf W W,为了与上一次迭代中用于计算接收组合矩阵的发射功率矩阵区分,我们在当前迭代中引入了发射功率向量 p = [ p 1 , p 2 , ⋯   , p k ] T \mathbf{p}=\left[p_{1}, p_{2}, \cdots, p_{k}\right]^{\mathrm{T}} p=[p1,p2,,pk]T 作为中间变量。因此,问题(8)可以等价地转化为

max ⁡ p , η η  s.t.  γ ^ k ≥ η , 1 ≤ k ≤ K , 0 ≤ p k ≤ p max ⁡ , 1 ≤ k ≤ K , \begin{array}{ll} \max _{\mathbf{p}, \eta} & \eta \\ \text { s.t. } & \hat{\gamma}_{k} \geq \eta, 1 \leq k \leq K, \\ & 0 \leq p_{k} \leq p_{\max }, 1 \leq k \leq K, \end{array} maxp,η s.t. ηγ^kη,1kK,0pkpmax,1kK,

其中 η η η 表示用户间的最小SINR。很容易验证,当(11b)中的约束满足等式[31],[32]时,得到问题(11)的最优解。否则,我们可以随时调整某些用户的发射功率,以确保不等式在保持最小SINR不变的情况下保持相等。换句话说,线性方程 p k [ A ] k , k / η = ∑ i = 1 , i ≠ k K p i [ A ] k , i + b k , 1 ≤ k ≤ K p_{k}[\mathbf{A}]_{k, k} / \eta=\sum_{i=1, i \neq k}^{K} p_{i}[\mathbf{A}]_{k, i}+b_{k}, 1 \leq k \leq K pk[A]k,k/η=i=1,i=kKpi[A]k,i+bk,1kK 始终保持,等价于下面的矩阵形式
D ( η ) p = b \mathbf{D}(\eta) \mathbf{p}=\mathbf{b} D(η)p=b

其中 D ( η ) ∈ C K × K \mathbf{D}(\eta) \in \mathbb{C}^{K \times K} D(η)CK×K 是一个方阵,其对角元素和非对角元素分别由 [ D ( η ) ] k , k = [ A ] k , k / η [\mathbf{D}(\eta)]_{k, k}=[\mathbf{A}]_{k, k} / \eta [D(η)]k,k=[A]k,k/η [ D ( η ) ] k , i = − [ A ] k , i [\mathbf{D}(\eta)]_{k, i}=-[\mathbf{A}]_{k, i} [D(η)]k,i=[A]k,i 给出, 1 ≤ k ≠ i ≤ K 1 \leq k \neq i \leq K 1k=iK。因此,传输功率向量可以表示为关于 η η η 的函数:

p ( η ) = D ( η ) − 1 b (13) \mathbf{p}(\eta)=\mathbf{D}(\eta)^{-1} \mathbf{b}\tag{13} p(η)=D(η)1b(13)

值得强调的是,(13)所示的发射功率矢量解对问题(11)是可行的,只有当满足约束(11c)。因此,我们发展了二分法来寻找使 p ( η ) \mathbf{p}(\eta) p(η) 满足约束(11c)的最大 η η η 值。首先,我们选择一个初始搜索区间 ( η min ⁡ , η max ⁡ ) \left(\eta_{\min }, \eta_{\max }\right) (ηmin,ηmax),其中包含最优 η η η。然后,通过检验 η = ( η min ⁡ + η max ⁡ ) / 2 \eta=\left(\eta_{\min }+\eta_{\max }\right) / 2 η=(ηmin+ηmax)/2 是否 Min ⁡ { p ( η ) } ≥ 0 \operatorname{Min}\{\mathbf{p}(\eta)\} \geq 0 Min{p(η)}0 Max ⁡ { p } ≤ p max ⁡ \operatorname{Max}\{\mathbf{p}\} \leq p_{\max } Max{p}pmax,来检验搜索内部中点的可行性。如果 η η η 可行,则将 η m i n η_{\rm min} ηmin 更新为η,否则将 η m a x η_{\rm max} ηmax 更新为 η η η。这个过程重复进行,直到达到预定的精度。

在这里插入图片描述

详细的基于二分法的算法如算法1所示。在第一行中,我们首先初始化 η η η 的下界和上界, η m i n = 0 η_{\rm min}=0 ηmin=0 η max ⁡ = p max ⁡ h min ⁡ / σ 2 \eta_{\max }=p_{\max } h_{\min } / \sigma^{2} ηmax=pmaxhmin/σ2,其中 h min ⁡ h_{\min} hmin 为用户之间的最小通道增益,即 h min ⁡ = Min ⁡ { ∥ h 1 ( r ~ ) ∥ 2 2 , ∥ h 2 ( r ~ ) ∥ 2 2 , ⋯   , ∥ h k ( r ~ ) ∥ 2 2 } h_{\min }=\operatorname{Min}\left\{\left\|\mathbf{h}_{1}(\tilde{\mathbf{r}})\right\|_{2}^{2},\left\|\mathbf{h}_{2}(\tilde{\mathbf{r}})\right\|_{2}^{2}, \cdots,\left\|\mathbf{h}_{k}(\tilde{\mathbf{r}})\right\|_{2}^{2}\right\} hmin=Min{h1(r~)22,h2(r~)22,,hk(r~)22}。在第3-4行中,我们根据(12)计算给定的 η = ( η min ⁡ + η max ⁡ ) / 2 \eta=\left(\eta_{\min }+\eta_{\max }\right) / 2 η=(ηmin+ηmax)/2 的传输功率向量。在第5-9行中,如果每个用户的发射功率满足约束(11c),那么下界 η m i n η_{\rm min} ηmin 被当前的 η η η 所取代。否则,上界 η m a x η_{\rm max} ηmax 被替换为当前 η η η。因此,在第2-10行中,传输功率向量不断更新,直到搜索区间小于正收敛阈值。

在此基础上,提出了一种 BCD-based 的算法,在给定APV r ~ \tilde{\mathbf{r}} r~ 的情况下,对接收组合矩阵和发射功率矩阵进行联合优化。在每次迭代中,对于给定的发射功率矩阵 P \bf P P,我们根据(9)得到接收组合矩阵 W \bf W W 的闭式解。对于给定的 W \bf W W,我们接着利用算法1求解发射功率向量 P \bf P P,并更新为 P = diag ⁡ { p } \mathbf{P}=\operatorname{diag}\{\mathbf{p}\} P=diag{p}。在迭代过程中,接收组合矩阵和发射功率矩阵交替优化,直至收敛。基于bcd的详细算法如算法2所示。在第1行中,将所有用户的发射功率初始化为最大功率,即 P ( 0 ) = p max ⁡ I K \mathbf{P}^{(0)}=p_{\max } \mathbf{I}_{K} P(0)=pmaxIK。然后在第2行中计算信道矩阵 H ( r ~ ) \mathbf{H}(\tilde{\mathbf{r}}) H(r~)。有了输入 P ( 0 ) \mathbf{P}^{(0)} P(0) H ( r ~ ) \mathbf{H}(\tilde{\mathbf{r}}) H(r~),由第3行中的MMSE接收机获得初始接收组合矩阵 W ( 0 ) \mathbf{W}^{(0)} W(0)。随后,在线路4-10中交替优化接收组合矩阵和发射功率矩阵,直至收敛。注意,在第8行中,定义第 j j j 次迭代中多个用户之间的最小可达速率为

G ( P ( j ) , W ( j ) ) = min ⁡ k { R k } (14) \mathcal{G}\left(\mathbf{P}^{(j)}, \mathbf{W}^{(j)}\right)=\min _{k}\left\{R_{k}\right\}\tag{14} G(P(j),W(j))=kmin{Rk}(14)

其中 R k R_{k} Rk 可以通过(5)和(6)计算,给定 P ( j ) \mathbf{P}^{(j)} P(j) W ( j ) \mathbf{W}^{(j)} W(j)。如果目标值的相对增加小于正收敛阈值 ξ ξ ξ,迭代过程将终止。最后,得到了最优接收组合矩阵和发射功率矩阵,对应于给定APV的多用户最大最小可达速率,即 R ( r ~ ) = G ( P , W ) R(\tilde{\mathbf{r}})=\mathcal{G}(\mathbf{P}, \mathbf{W}) R(r~)=G(P,W)

B. APV Optimization

在本文算法的外环中,由于可以在内环中计算任意给定APV r ~ \tilde{\mathbf{r}} r~ 的最优接收组合矩阵和发射功率矩阵,因此相应的多用户最大最小可达率可以表示为APV的函数 R ( r ~ ) R(\tilde{\mathbf{r}}) R(r~),从而将原问题(7)转化为下面的APV优化问题

max ⁡ r ~ R ( r ~ )  s.t.  r m ∈ C r , 1 ≤ m ≤ M ∥ r m − r i ∥ 2 ≥ D , 1 ≤ m ≠ i ≤ M . \begin{array}{ll} \max _{\tilde{\mathbf{r}}} & R(\tilde{\mathbf{r}}) \\ \text { s.t. } & \mathbf{r}_{m} \in \mathcal{C}_{r}, 1 \leq m \leq M \\ & \left\|\mathbf{r}_{m}-\mathbf{r}_{i}\right\|_{2} \geq D, 1 \leq m \neq i \leq M . \end{array} maxr~ s.t. R(r~)rmCr,1mMrmri2D,1m=iM.

虽然 R ( r ~ ) R(\tilde{\mathbf{r}}) R(r~) 可以根据算法2计算,但其高度非凸的形式使直接解决问题(15)变得复杂。另外, [ − A / 2 , A / 2 ] 2 M [-A / 2, A / 2]^{2 M} [A/2,A/2]2M 的解空间一般较大,直接寻找最优解可能会导致计算复杂度过高。为了解决这个难题,PSO作为一种高效的方法被引入了[33]-[35]。

在 PSO-based 的算法中,我们首先随机初始化 N N N 个位置为 R ( 0 ) = { r ~ 1 ( 0 ) , r ~ 2 ( 0 ) , … , r ~ N ( 0 ) } \mathcal{R}^{(0)}=\left\{\tilde{\mathbf{r}}_{1}^{(0)}, \tilde{\mathbf{r}}_{2}^{(0)}, \ldots, \tilde{\mathbf{r}}_{N}^{(0)}\right\} R(0)={r~1(0),r~2(0),,r~N(0)} 和速度 V ( 0 ) = { v ~ 1 ( 0 ) , v ~ 2 ( 0 ) , … , v ~ N ( 0 ) } \mathcal{V}^{(0)}=\left\{\tilde{\mathbf{v}}_{1}^{(0)}, \tilde{\mathbf{v}}_{2}^{(0)}, \ldots, \tilde{\mathbf{v}}_{N}^{(0)}\right\} V(0)={v~1(0),v~2(0),,v~N(0)},其中每个粒子代表APV的一个可能解,即:

r ~ n ( 0 ) = [ x n , 1 ( 0 ) , y n , 1 ( 0 ) ⏟ MA  , x n , 2 ( 0 ) , y n , 2 ( 0 ) ⏟ MA  2 , ⋯   , x n , M ( 0 ) , y n , M ( 0 ) ⏟ MA  M ] T , \tilde{\mathbf{r}}_{n}^{(0)}=[\underbrace{ x_{n, 1}^{(0)}, y_{n, 1}^{(0)}}_{\text {MA }}, \underbrace{x_{n, 2}^{(0)}, y_{n, 2}^{(0)}}_{\text {MA } 2}, \cdots, \underbrace{x_{n, M}^{(0)}, y_{n, M}^{(0)}}_{\text {MA } M}]^{T}, r~n(0)=[MA  xn,1(0),yn,1(0),MA 2 xn,2(0),yn,2(0),,MA M xn,M(0),yn,M(0)]T,

其中 x n , m ( 0 ) , y n , m ( 0 ) ∼ U [ − A / 2 , A / 2 ] x_{n, m}^{(0)}, y_{n, m}^{(0)} \sim \mathcal{U}[-A / 2, A / 2] xn,m(0),yn,m(0)U[A/2,A/2] 对于 1 ≤ n ≤ N , 1 ≤ m ≤ M 1 \leq n \leq N, 1 \leq m \leq M 1nN,1mM。确保每个MA的初始位置不超过有限的移动区域,即约束(15b)保持。

然后,每个粒子根据个体经验(已知的局部最佳位置,即 r ~ n , p b e s t \tilde{\mathbf{r}}_{n, p b e s t} r~n,pbest)和群体经验(已知的全局最佳位置,即 r ~ g b e s t \tilde{\mathbf{r}}_{ {gbest }} r~gbest)更新其位置。因此,对于每次迭代,每个粒子的速度和位置更新为

v ~ n ( t + 1 ) = ω v ~ n ( t ) + c 1 τ 1 ( r ~ n , p b e s t − r ~ n ( t ) ) + c 2 τ 2 ( r ~ g b e s t − r ~ n ( t ) ) , (17) \tilde{\mathbf{v}}_{n}^{(t+1)}=\omega \tilde{\mathbf{v}}_{n}^{(t)}+c_{1} \tau_{1}\left(\tilde{\mathbf{r}}_{n, pbest}-\tilde{\mathbf{r}}_{n}^{(t)}\right)+c_{2} \tau_{2}\left(\tilde{\mathbf{r}}_{gbest}-\tilde{\mathbf{r}}_{n}^{(t)}\right),\tag{17} v~n(t+1)=ωv~n(t)+c1τ1(r~n,pbestr~n(t))+c2τ2(r~gbestr~n(t)),(17)

r ~ n ( t + 1 ) = B ( r ~ n ( t ) + v ~ n ( t + 1 ) ) (18) \tilde{\mathbf{r}}_{n}^{(t+1)}=\mathcal{B}\left(\tilde{\mathbf{r}}_{n}^{(t)}+\tilde{\mathbf{v}}_{n}^{(t+1)}\right)\tag{18} r~n(t+1)=B(r~n(t)+v~n(t+1))(18)

对于 1 ≤ n ≤ N 1 \leq n \leq N 1nN,用 t t t 表示迭代指数。参数 c 1 c_1 c1 c 2 c_2 c2 分别是个体学习因子和全局学习因子,代表每个粒子向最佳位置移动的步长。 τ 1 τ_1 τ1 τ 2 τ_2 τ2 是两个均匀分布在 [ 0 , 1 ] [0,1] [0,1] 中的随机参数,其目的是增加逃离局部最优(local optima)的搜索的随机性。 ω ω ω 是惯性权重,用来维持粒子运动的惯性(inertia of the particle movement)。特别是为了平衡粒子群搜索的速度和精度,惯性权重在迭代过程中不断减小,如下所示:
ω = ( ω max ⁡ − ( ω max ⁡ − ω min ⁡ ) t T ) (19) \omega=\left(\omega_{\max }-\frac{\left(\omega_{\max }-\omega_{\min }\right) t}{T}\right)\tag{19} ω=(ωmaxT(ωmaxωmin)t)(19)

其中 ω max ⁡ \omega_{\max} ωmax ω min ⁡ \omega_{\min} ωmin 分别是 ω ω ω 的最小值和最大值, T T T 是最大迭代次数。

由于约束(15b),如果一个粒子移出了可行域的边界,我们将其位置分量投影到相应的最小/最大值,即

[ B ( r ~ ) ] i = { − A 2 ,  if  [ r ~ ] i < − A 2 A 2 ,  if  [ r ~ ] i > A 2 [ r ~ ] i ,  otherwise.  (20) [\mathcal{B}(\tilde{\mathbf{r}})]_{i}=\left\{\begin{array}{ll} -\frac{A}{2}, & \text { if }[\tilde{\mathbf{r}}]_{i}<-\frac{A}{2} \\ \frac{A}{2}, & \text { if }[\tilde{\mathbf{r}}]_{i}>\frac{A}{2} \\ {[\tilde{\mathbf{r}}]_{i},} & \text { otherwise. } \end{array}\right.\tag{20} [B(r~)]i= 2A,2A,[r~]i, if [r~]i<2A if [r~]i>2A otherwise. (20)

(18)中对投影函数 B ( r ~ ) \mathcal{B}(\tilde{\mathbf{r}}) B(r~) 的利用是为了确保在迭代过程中,APV的解始终位于可行区域。

每个粒子的适应度根据算法2进行评估,并由 R ( r ~ n ) , 1 ≤ n ≤ N R\left(\tilde{\mathbf{r}}_{n}\right), 1 \leq n \leq N R(r~n),1nN 给出,在给定的APV下最大化多个用户的最小可实现率。此外,为了保证约束(15c),我们在适应度函数中引入了一个自适应惩罚因子[36],并更新如下:
F ( r ~ n ( t ) ) = R ( r ~ n ( t ) ) − τ ∣ P ( r ~ n ( t ) ) ∣ , (21) \mathcal{F}\left(\tilde{\mathbf{r}}_{n}^{(t)}\right)=R\left(\tilde{\mathbf{r}}_{n}^{(t)}\right)-\tau\left|\mathcal{P}\left(\tilde{\mathbf{r}}_{n}^{(t)}\right)\right|,\tag{21} F(r~n(t))=R(r~n(t))τ P(r~n(t)) ,(21)

其中 P ( r ~ ) \mathcal{P}(\tilde{\mathbf{r}}) P(r~) 是一个集合,其中每个元素代表APV r ~ \tilde{\mathbf{r}} r~ 中违反最小MA间距离约束的MA对位置。它可以定义为

P ( r ~ ) = { ( r m , r i ) ∣ ∥ r m − r i ∥ 2 < D , 1 ≤ m < i ≤ M } . (22) \mathcal{P}(\tilde{\mathbf{r}})=\left\{\left(\mathbf{r}_{m}, \mathbf{r}_{i}\right) \mid\left\|\mathbf{r}_{m}-\mathbf{r}_{i}\right\|_{2}<D, 1 \leq m<i \leq M\right\} .\tag{22} P(r~)={(rm,ri)rmri2<D,1m<iM}.(22)

τ τ τ 是一个大的 positive penalty 参数,它确保不等式方程 R ( r ~ n ( t ) ) − τ ≤ 0 R\left(\tilde{\mathbf{r}}_{n}^{(t)}\right)-\tau \leq 0 R(r~n(t))τ0 对所有apv都成立。因此,惩罚参数驱动每个粒子移动到保证 inter-MA distance 的位置,否则其适应度值小于零。这意味着在迭代期间, ∣ P ( r ~ n ( t ) ) ∣ \left|\mathcal{P}\left(\tilde{\mathbf{r}}_{n}^{(t)}\right)\right| P(r~n(t)) 将趋近于零,即约束(15c)最终得到满足。

通过对每个粒子进行适应度评估,更新它们的个体和全局最佳位置,直到收敛。粒子间的最终最佳位置通常是APV的次优解,其对应的接收组合矩阵和发射功率矩阵由算法2计算。

在这里插入图片描述

算法3总结了求解问题(7)的基于粒子群算法的详细总体算法。在第1行,在 2 M 2 M 2M 维搜索空间中,每个粒子的位置和速度被随机初始化,每个分量均匀分布在 [ − A / 2 , A / 2 ] [−A/2, A/2] [A/2,A/2] 中。在第2-3行中,每个粒子通过适应度函数进行评估,从而找到局部和全局的最佳位置。在第5行中,惯性权重随着迭代指数的增加,从 ω max ⁡ ω_{\max} ωmax ω min ⁡ ω_{\min} ωmin 线性递减。第7行,根据相对的局部和全局最佳位置更新每个粒子的速度,驱动粒子在可行域内运动。在第8-14行,我们评估了粒子的适应度值,并将其与其局部/全局最佳位置的适应度值进行比较。对于每个粒子,如果其适应度值优于其局部最优位置或全局最优位置,则将相应的最佳位置替换为当前粒子的位置。因此,在第4-16行中,全局最佳位置可以在迭代过程中以其适应度值非递减的方式进行更新。至此,我们解决了原来的问题(7)。在提出的解中,接收组合矩阵和发射功率矩阵是最优的,而APV总体上是次优的。

C. Convergence and Complexity Analysis

由于整个算法是基于双环的,其收敛性取决于BCD-based 的算法在内环和基于粒子群算法的算法在外环的收敛性。算法2的收敛性由以下不等式保证:
G ( P ( j ) , W ( j ) ) = G ( P ( j ) , W ^ ( r ~ , P ( j ) ) ) ≥ ( a ) G ( P ( j ) , W ^ ( r ~ , P ( j − 1 ) ) ) ≥ ( b ) G ( P ( j − 1 ) , W ^ ( r ~ , P ( j − 1 ) ) ) = G ( P ( j − 1 ) , W ( j − 1 ) ) \begin{aligned} \mathcal{G}\left(\mathbf{P}^{(j)}, \mathbf{W}^{(j)}\right) & =\mathcal{G}\left(\mathbf{P}^{(j)}, \hat{\mathbf{W}}\left(\tilde{\mathbf{r}}, \mathbf{P}^{(j)}\right)\right) \\ & \stackrel{(a)}{\geq} \mathcal{G}\left(\mathbf{P}^{(j)}, \hat{\mathbf{W}}\left(\tilde{\mathbf{r}}, \mathbf{P}^{(j-1)}\right)\right) \\ & \stackrel{(b)}{\geq} \mathcal{G}\left(\mathbf{P}^{(j-1)}, \hat{\mathbf{W}}\left(\tilde{\mathbf{r}}, \mathbf{P}^{(j-1)}\right)\right) \\ & =\mathcal{G}\left(\mathbf{P}^{(j-1)}, \mathbf{W}^{(j-1)}\right) \end{aligned} G(P(j),W(j))=G(P(j),W^(r~,P(j)))(a)G(P(j),W^(r~,P(j1)))(b)G(P(j1),W^(r~,P(j1)))=G(P(j1),W(j1))

而且,在算法3中,全局最优位置的适应度值在迭代过程中是非递减的,即:
F ( r ~ gbest  ( t + 1 ) ) ≥ F ( r ~ gbest  ( t ) ) . (24) \mathcal{F}\left(\tilde{\mathbf{r}}_{\text {gbest }}^{(t+1)}\right) \geq \mathcal{F}\left(\tilde{\mathbf{r}}_{\text {gbest }}^{(t)}\right) .\tag{24} F(r~gbest (t+1))F(r~gbest (t)).(24)

同时,问题(7)的目标值总是有界的。因此,保证了整体算法的收敛性。此外,收敛性能也将在第四节进行仿真验证。

IV. SIMULATION RESULTS

  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WHS-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值